

# **3D-UHR Survey Results Report WPD**

Energinet Denmark Hesselø 3D-UHR Survey | Denmark, Inner Danish Sea, *Kattegat* 

F172145-REP-UHR-001 02 | 18 August 2021 Final **Energinet Eltransmission A/S** 

# **ENERGINET**

# **Document Control**

## **Document Information**

| Project Title      | Energinet Denmark Hesselø 3D-UHR Survey |
|--------------------|-----------------------------------------|
| Document Title     | 3D-UHR Survey Results Report WPD        |
| Fugro Project No.  | F172145                                 |
| Fugro Document No. | F172145-REP-UHR-001                     |
| Issue Number       | 02                                      |
| Issue Status       | Final                                   |

## **Client Information**

| Client              | Energinet Eltransmission A/S                   |
|---------------------|------------------------------------------------|
| Client Address      | Tonne Kjærsvej 65, DK-7000 Fredericia, Denmark |
| Client Contact      | Stricker Mathiasen, Søren                      |
| Client Document No. | N/A                                            |

## **Document History**

| Issue | Date        | Status   | Comments on Content | Prepared<br>By | Checked<br>By | Approved<br>By |
|-------|-------------|----------|---------------------|----------------|---------------|----------------|
| 01    | 2 July 2021 | Complete |                     | MH/PSC         | WVK/CIW       | AP             |
| 02    | 18 Aug 2021 | Final    |                     | MH/PSC         | WVK/CIW       | AP             |

## Project Team

| Initials | Name                | Role                                       |
|----------|---------------------|--------------------------------------------|
| AP       | A. Padwalkar        | Project Manager                            |
| МН       | Menno Hofstra       | Geologist                                  |
| PSC      | Peter Schilder      | Geologist                                  |
| WVK      | Wessel van Kesteren | Principal Geologist                        |
| CIW      | Chris Wright        | Project Reporting and Deliverables Manager |



#### **Energinet Eltransmission A/S**

Tonne Kjærsvej 65 DK-7000 Fredericia Denmark Bldg

18 August 2021

#### Dear Sir/Madam,

We have the pleasure of submitting the '3D-UHR Survey Results Report WPD for the 'Energinet Denmark Hesselø Geophysical Survey'. This report presents the results of WPD (3D-UHR scope).

This report was prepared by Menno Hofstra and Peter Schilder under the supervision of Wessel van Kesteren (Principal Geologist) and Chris Wright (Project Reporting and Deliverables Manager).

We hope that you find this report to your satisfaction; should you have any queries, please do not hesitate to contact us.

Yours faithfully,

Stt

**Chris Wright** Project Reporting and Deliverables Manager

# **Executive Summary**

| Interpretative Si                | te Investigation - He | sselø OWF                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Survey Dates 28 February until 1 |                       | 10 March 2021                                                                                                                                                                                                                                                                                                                                                                                               |
| Equipment 3D-UHR seismic         |                       |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Coordinate Syste                 | m                     | Datum: European Terrestrial Reference System 1989 (ETRS89)<br>Projection: UTM Zone 32N, CM 3°E                                                                                                                                                                                                                                                                                                              |
| Potential Site-Sp                | ecific Hazards        |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Boulders, cobble                 | s and gravel          | A total of 576 positive point anomalies were observed in Unit D, Unit E and Unit H at the OSS1 site, interpreted as cobbles and/or boulders. No positive point anomalies were observed at the OSS2 site.                                                                                                                                                                                                    |
| Postglacial anom                 | alies                 | Postglacial anomalies were observed in Holocene units, sporadically at the OSS1 site and abundantly at the OSS2 site.                                                                                                                                                                                                                                                                                       |
| Buried channels                  |                       | Buried channels were observed internally in Unit D at the OSS1 site.                                                                                                                                                                                                                                                                                                                                        |
| Mass Transport D                 | Deposits (MTDs)       | MTDs are present in the upper part of Unit D at the OSS1 site.                                                                                                                                                                                                                                                                                                                                              |
| Glacial deformati                | on                    | Locally, Unit D and Unit E show indications of glacial deformation at both OSS1 and OSS2 sites.                                                                                                                                                                                                                                                                                                             |
| Shallow Geology                  | /                     |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Holocene (Units )                | A, B and C)           | Holocene deposits (Units A, B and C) are present in the OSS1 and OSS2 sites.<br>These units consist of Postglacial SAND and CLAY.                                                                                                                                                                                                                                                                           |
| Unit D                           |                       | Unit D is present across the entire OSS1 site and locally at the OSS2 site. The seismic character of Unit D is in general defined by low to medium-amplitude parallel reflectors. In the OSS1 site, three internal horizons were discriminated between different acoustic facies. The unit comprises Late Glacial CLAY deposited in a glaciomarine and/or glaciolacustrine environment.                     |
| Unit E                           |                       | Unit E is present across the OSS1 and OSS2 sites. The seismic character of Unit E is semi-transparent to chaotic. The unit comprises glacially deformed glaciomarine and glaciolacustrine CLAY.                                                                                                                                                                                                             |
| Unit F                           |                       | Unit F is absent in the OSS1 and OSS2 sites.                                                                                                                                                                                                                                                                                                                                                                |
| Unit G                           |                       | Unit is absent at the OSS2 site and in the top 60 m at the OSS1 site.                                                                                                                                                                                                                                                                                                                                       |
| Unit H                           |                       | Unit H is present across the entire OSS2 site and locally at the OSS1 site. The seismic character is variable. At the OSS1 site, the unit is acoustically semi-transparent to chaotic, while at the OSS2 site it is (semi-)transparent with some medium-amplitude parallel reflectors. The unit comprises glacial, periglacial and/or glaciomarine TILL of Early Pleistocene age.                           |
| Unit I                           |                       | Unit I is present at the OSS1 and OSS2 sites. The seismic character shows low<br>to medium-amplitude, low-frequency parallel reflectors. Locally the seismic<br>character is acoustically (semi-)transparent. The unit is interpreted as pre-<br>Quaternary bedrock and comprises Jurassic sandy MUDSTONE to Lower<br>Cretaceous LIMESTONE and glauconitic SANDSTONE, deposited in a marine<br>environment. |



# **Document Arrangement**

| Document Number      | Document Title                             |
|----------------------|--------------------------------------------|
| F172145-REP-MOB-001  | Mobilisation Report - Pioneer              |
| F172145-REP-MOB-002  | Mobilisation Report - Frontier             |
| F172145-REP-OPS-001  | Operations Report - Pioneer                |
| F172145-REP-OPS-002  | Operations Report - Frontier               |
| F172145-REP-GEOP-001 | Geophysical Survey Report (WPA scope)      |
| F172145-REP-HYD-001  | Hydrographical Report (WPB scope)          |
| F172145-REP-MAG-001  | Magnetometer Box Survey Report (WPC scope) |
| F172145-REP-UHR-001  | 3D-UHR Survey Results Report (WPD scope)   |



# Contents

| cutive Summary                            | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ument Arrangement                         | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Introduction                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| General                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Survey Aims and Overview                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Geodetic Parameters                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vertical Datum                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mobilisation and Operations               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vessel Details and Instrument Spread      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vessel Details Fugro Pioneer              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Instrument Spread Fugro Pioneer           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Results                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Regional Geological Setting               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Seismostratigraphic Framework             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Seismostratigraphic Units                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Geological Features                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Processing and Interpretation Methodology | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data Processing                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data Interpretation                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3D-UHR Seismic Data Quality               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| References                                | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| endices                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | uurive Summary         uurive Arrangement         Introduction         General         Survey Aims and Overview         Geodetic Parameters         Vertical Datum         Mobilisation and Operations         Vessel Details and Instrument Spread         Vessel Details Fugro Pioneer         Instrument Spread Fugro Pioneer         Regults         Regional Geological Setting         Seismostratigraphic Framework         Seismostratigraphic Units         Geological Features         Processing and Interpretation Methodology         Data Processing         Data Interpretation         3D-UHR Seismic Data Quality         References         endices |

# Appendices

| Appendix A | Guidelines on Use of Report |
|------------|-----------------------------|
| Appendix B | Charts                      |
| Appendix C | 3D-UHR Processing Report    |
| Appendix D | Digital Deliverables        |
|            |                             |



fugro

# Figures in the Main Text

| Figure 1.1: Location of the HOWF site (marked in orange).                                                         | 1   |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1.2: Location of the OSS1 and OSS2 sites in the HOWF site.                                                 | 2   |
| Figure 1.3: 3D-UHR seismic line plan for the OSS1 site in the HOWF site.                                          | 2   |
| Figure 1.4: 3D-UHR seismic line plan for the OSS2 site in the HOWF site.                                          | 3   |
| Figure 1.5: Project geodetic and projection parameters.                                                           | 5   |
| Figure 3.1: Fugro Pioneer                                                                                         | 7   |
| Figure 4.1: Structural setting of the southern Kattegat and the Sorgenfrei–Tornquist Zone (after GEU              | S,  |
| 2020).                                                                                                            | 9   |
| Figure 4.2: Bedrock geology (left image) and depth to the base of Quaternary (right image) at the                 |     |
| HOWF site (modified after GEUS, 2020). Profiles are presented in Figure 4.4.                                      | 10  |
| Figure 4.3: Palaeogeographies during the Weichselian in the Kattegat area (after Houmark-Nielsen                  |     |
| and Kjær, 2003). The yellow star indicates the approximate location of the HOWF site                              | 11  |
| Figure 4.4: Interpretative profiles of the shallow geology at/near the HOWF site; profiles A-A' and B-            | -B′ |
| from Jensen et al. (2002) and profile C–C' from Bendixen et al. (2015). See Figure 4.2 for the location           | of  |
| the profiles.                                                                                                     | 12  |
| Figure 4.5: Inline 485. Overview of the seismostratigraphic units in OSS1.                                        | 15  |
| Figure 4.6: Inline 12405. Overview of the seismostratigraphic units in OSS2.                                      | 15  |
| Figure 4.7: Thickness map of Unit Holocene in metres at the OSS1 site.                                            | 16  |
| Figure 4.8: Thickness map of Unit Holocene in metres at the OSS2 site.                                            | 17  |
| Figure 4.9: Inline 367 (OSS1). Data example of Unit Holocene and Unit D.                                          | 17  |
| Figure 4.10: Thickness map of Unit D in metres at OSS1 site.                                                      | 18  |
| Figure 4.11: Thickness map of Unit D in metres at the OSS2 site.                                                  | 19  |
| Figure 4.12: Crossline 2005 in OSS1. Data example of Unit D, Unit E and Unit H.                                   | 19  |
| Figure 4.13: Crossline 4151 in OSS1. Data example of Unit D and Unit E.                                           | 20  |
| Figure 4.14: Depth to internal Horizon H11 (metres MSL) in Unit D at the OSS1 site.                               | 20  |
| Figure 4.15: Thickness map of Unit E in metres at the OSS1 site.                                                  | 21  |
| Figure 4.16: Thickness map of Unit E in metres at the OSS2 site.                                                  | 21  |
| Figure 4.17: Crossline 9066 in OSS2. Data example of Unit E, Unit H and Unit I.                                   | 22  |
| Figure 4.18: Thickness map of Unit H in metres at the OSS1 site.                                                  | 23  |
| Figure 4.19: Thickness map of Unit H in metres at the OSS2 site.                                                  | 23  |
| Figure 4.20: Depth to Horizon H50 (top bedrock) in metres BSF at the OSS1 site.                                   | 24  |
| Figure 4.21: Depth to Horizon H50 (top bedrock) in metres BSF at the OSS2 site.                                   | 24  |
| Figure 4.22: Inline 12400 in OSS2. Data example of Postglacial anomalies.                                         | 25  |
| Figure 4.23: Depth slice example of the OSS2 site (31.75 m MSL) in Unit Holocene with Postglacial                 |     |
| anomalies (white dots).                                                                                           | 25  |
| Figure 4.24: Inline 12410 in OSS2. Borehole log of Anorm_1 projected on a 3D-UHR seismic line.                    | 28  |
| Figure 4.25: Inline 12370 in OSS2. Borehole log of Anorm_2 projected on a 3D-UHR seismic line.                    | 28  |
| Figure 4.26: Inline 434 in OSS1. Data example of a diffraction hyperbola in Unit D in unmigrated 3D-<br>UHR data. | 29  |
| Figure 4.27: Depth slice example (41.5 m MSL) of a point anomaly (the same as in figure above) in                 |     |
| migrated 3D-UHR data.                                                                                             | 29  |
| Figure 4.28: Thickness of channel-like features at H12 in metres BSF at the OSS1 site.                            | 31  |
| Figure 4.29: Inline 485 in OSS1. Data example of MTD and faulting in Unit D.                                      | 32  |
| Figure 4.30: Depth slice example (49 m MSL) in the OSS1 site showing faulting and MTD in Unit D.                  | 32  |

| Figure 5.1: Shot gather display from EOL QC .pdf                                                   | 34    |
|----------------------------------------------------------------------------------------------------|-------|
| Figure 5.2: Near Trace Gather used for data QC.                                                    | 35    |
| Figure 5.3: Brute Stack.                                                                           | 35    |
| Figure 5.4: RMS Noise Analysis Windows for signal and noise analysis. Signal analysis window is gr | een   |
| and the Noise analysis window.                                                                     | 36    |
| Figure 5.5: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X- | axis  |
| indicates shot point number, Y-axis indicates channel number. Source 1 Cable 1 to 4 is shown here  | e. 37 |
| Figure 5.6: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X- | axis  |
| indicates shot point number, Y-axis indicates channel number. Source 2 Cable 1 to 4 is shown here  | e. 37 |
| Figure 5.7: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X- | axis  |
| indicates shot point number, Y-axis indicates channel number. Source 1 Cable 1 to 4 is shown here  | e. 37 |
| Figure 5.8: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X- | axis  |
| indicates shot point number, Y-axis indicates channel number. Source 2 Cable 1 to 4 is shown here  | e. 38 |
| Figure 5.9: Start-End of line Noise File.                                                          | 39    |
| Figure 5.10: Comparison between navigation calculated and direct arrival picked offset.            | 40    |
| Figure 5.11: Coverage as seen on CoverPoint.                                                       | 41    |
| Figure 5.12: Feather Angle plot for quality control.                                               | 41    |

# **Tables in the Main Text**

| Table 1.1: Survey requirements overview –3D-UHR operations.          | 4  |
|----------------------------------------------------------------------|----|
| Table 3.1: Equipment List                                            | 7  |
| Table 4.1: Overview of seismostratigraphic units at the OSS sites.   | 14 |
| Table 4.2: Depth range of the interpreted horizons at the OSS sites. | 15 |



# Abbreviations

| ADRS     | Altitude and Heading Reference System                                                       |
|----------|---------------------------------------------------------------------------------------------|
| ALARP    | As low as reasonably practicable                                                            |
| APOS     | Acoustic positioning operating station                                                      |
| BR       | Bedrock                                                                                     |
| BSF      | Below seafloor                                                                              |
| СМ       | Central meridian                                                                            |
| COG      | Centre of gravity                                                                           |
| COVID    | Coronavirus disease                                                                         |
| CRP      | Common reference point                                                                      |
| CTD      | Conductivity, Temperature and Density                                                       |
| DGPS     | Differential global positioning system                                                      |
| DP       | Dynamic positioning                                                                         |
| DTM      | Digital terrain model                                                                       |
| DTU      | Technical University of Denmark                                                             |
| ERP      | Emergency response plan                                                                     |
| FMGT     | Fledermaus geocoder toolbox                                                                 |
| FNLM     | Fugro Netherlands Marine                                                                    |
| GEUS     | Danmarks Og Grønlands Geologiske Undersøgelse (Denmark's and Greenland's Geological Survey) |
| GL       | Glacial                                                                                     |
| GNSS     | Global navigation satellite system                                                          |
| GPS      | Global positioning system                                                                   |
| НВ       | Head buoy                                                                                   |
| HF       | High frequency                                                                              |
| НОС      | Hazard observation card                                                                     |
| HOWF     | Hesselø Offshore Wind Farm                                                                  |
| HSE/HSSE | Health, safety and environment / Health, safety, security and environment                   |
| HV       | High voltage                                                                                |
| IHO      | International Hydrographic Organization                                                     |
| IMU      | Inertial measurement unit                                                                   |
| INS      | Inertial navigation sensor                                                                  |
| IODP     | International Ocean Discovery Program                                                       |
| ISO      | International Standards Organisation                                                        |
| LAT      | Lowest Astronomical Tide                                                                    |
| LF       | Low frequency                                                                               |
| LG       | Late Glacial                                                                                |
| MBES     | Multibeam echosounder                                                                       |
| MCS      | Multi-channel Seismic                                                                       |



| MDAC  | Methane-derived authigenic carbonates            |
|-------|--------------------------------------------------|
| MLSS  | Multi-level stacked sparker                      |
| МОВ   | Mobilisation                                     |
| MRU   | Motion reference unit                            |
| MSL   | Mean sea level                                   |
| MTD   | Mass transport deposits                          |
| NG    | Next generation                                  |
| ОСР   | Offshore converter platform                      |
| OCR   | Offshore client representative                   |
| OHSAS | Occupational Health and Safety Assessment Series |
| OPS   | Operations                                       |
| OSS   | Offshore substation                              |
| OWF   | Offshore wind farm                               |
| PBP   | Precise buoy positioning                         |
| PEP   | Project execution plan                           |
| PG    | Postglacial                                      |
| PPE   | Personal protective equipment                    |
| РРР   | Precise point positioning                        |
| QA    | Quality assurance                                |
| REP   | Representative                                   |
| RMS   | Root-mean-square                                 |
| RTK   | Realtime kinematic                               |
| SBES  | Single beam echosounder                          |
| SBP   | Sub-bottom profiler                              |
| SPRK  | Sparker                                          |
| SVP   | Sound velocity profile                           |
| ТВ    | Tail buoy                                        |
| ТР    | Tow point                                        |
| UHR   | Ultra-high resolution                            |
| UHRS  | Ultra-high resolution seismic                    |
| UTM   | Universal transverse mercator                    |
| VRF   | Vertical reference frame                         |
| WG    | Weichselian Glacial                              |
| WIFI  | Wireless Fidelity                                |
| WPA   | Work Package A                                   |
| WPD   | Work Package D                                   |



# 1. Introduction

### 1.1 General

Energinet Eltransmission A/S (Energinet) is developing a new offshore wind farm in the inner Danish Sea, Kattegat, the Hesselø Offshore Wind Farm (HOWF). The project survey site is located between Denmark and Sweden approximately 30 km North of Sjælland. Figure 1.1 presents the location of the site.

This report provides information relating to the acquisition and operations in respect to WPD (3D-UHR scope). The 3D-UHR seismic data acquisition took place in an approximately 1700 m by 500 m area centred on two offshore sub-station (OSS) locations (Figure 1.2, Figure 1.3 and Figure 1.4). These survey areas are referred to as 'OSS1 site' and 'OSS2 site' or 'the OSS sites'.



Guidelines on the use of this report are provided in Appendix A.

Figure 1.1: Location of the HOWF site (marked in orange).





Figure 1.2: Location of the OSS1 and OSS2 sites in the HOWF site.



Figure 1.3: 3D-UHR seismic line plan for the OSS1 site in the HOWF site.





Figure 1.4: 3D-UHR seismic line plan for the OSS2 site in the HOWF site.



### 1.2 Survey Aims and Overview

The following sub-sections provide details about the main survey requirements and the scope of work for the Client's Work Package D (WPD); the Energinet Denmark Hesselø Geophysical Survey.

#### 1.2.1 Survey Aims

The aim of the 3D-UHR seismic survey is to carry out high-resolution mapping of the subsurface geology to at least 60 m below seafloor (BSF) at the OSS sites, in order to identify and map:

- Stratigraphic horizons in high detail;
- Subsurface structures that could represent changes in soil properties;
- Geohazards and any boulders with dimensions larger than 1 m.

To achieve these objectives Fugro:

- Acquired 3D-UHR (ultra high resolution) seismic data to 60 m BSF to determine subsurface soil conditions that may influence foundation design below the effective penetration of the SBP;
- Utilised existing bathymetric data and other available sub-seafloor data (WPA and historical geotechnical data) to assist in the interpretation at the OSS locations.

#### 1.2.2 Survey Overview

A summary of the main survey requirements for the geophysical survey operations is presented in Table 1.1.

| Equipment Method                                   | Survey Requirements                                                                                                                                           |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Vessel                                             | Fugro Pioneer                                                                                                                                                 |  |  |  |
| OSS1/OSS2 Area Line spacing                        | <ul> <li>14 m for 3D-UHR seismic</li> </ul>                                                                                                                   |  |  |  |
| Survey Priority                                    | ■ 3D-UHR seismic                                                                                                                                              |  |  |  |
| Surface Positioning                                | <ul> <li>2 Independent systems</li> <li>Horizontal Positioning accuracy: 0.2 m (2σ, 95%);</li> <li>Vertical Positioning accuracy: 0.2 m (2σ, 95%);</li> </ul> |  |  |  |
| Multibeam Echosounder (To locate dropped objects). | <ul> <li>To be recorded.</li> </ul>                                                                                                                           |  |  |  |
| Multibeam Backscatter                              | To be recorded.                                                                                                                                               |  |  |  |
| SVP                                                | <ul> <li>The speed of sound in water shall be measured in the survey<br/>area once per 12 hour shift (as a minimum)</li> </ul>                                |  |  |  |

Table 1.1: Survey requirements overview –3D-UHR operations.



### 1.3 Geodetic Parameters

The project geodetic and projection parameters are summarised in Figure 1.5.

| Name: ETRS89 / UTM zone 32N [ETRF2000-ITRF2014]                                                               |                                                |                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|--|--|--|--|
| EPSG Code EPSG:25832                                                                                          |                                                |                                 |  |  |  |  |
| Global Navigation Satellite System (GNSS) Geodetic Parameters*                                                |                                                |                                 |  |  |  |  |
| Datum                                                                                                         | International Terrestrial Reference Frame 2014 | EPSG:1165                       |  |  |  |  |
| Ellipsoid                                                                                                     | GRS 1980                                       |                                 |  |  |  |  |
| Semi major axis                                                                                               | a = 6 378 137.00 m                             |                                 |  |  |  |  |
| Inverse flattening                                                                                            | 1/f = 298.257222101                            |                                 |  |  |  |  |
| Local Geodetic Datum Parameters                                                                               |                                                |                                 |  |  |  |  |
| Datum                                                                                                         | European Terrestrial Reference System 1989     | EPSG:6258                       |  |  |  |  |
| Ellipsoid                                                                                                     | GRS 1980                                       |                                 |  |  |  |  |
| Semi major axis                                                                                               | a = 6 378 137.00 m                             |                                 |  |  |  |  |
| Inverse flattening                                                                                            | 1/f = 298.257222101                            |                                 |  |  |  |  |
| Datum Transformation Parameters                                                                               | from ITRF2014 to ETRS89                        |                                 |  |  |  |  |
| X-axis translation 0.05582 m                                                                                  | X-axis rotation -0.0026051"                    | Scale difference 0.00334778 ppm |  |  |  |  |
| Y-axis translation 0.05332 m                                                                                  | Y-axis rotation -0.0157592"                    | Coordinate Frame rotation       |  |  |  |  |
| Z-axis translation -0.09531 m                                                                                 | m Z-axis rotation 0.025472" FUGRO:41366        |                                 |  |  |  |  |
| Local Projection Parameters                                                                                   |                                                |                                 |  |  |  |  |
| Map projection                                                                                                | Map projection Transverse Mercator             |                                 |  |  |  |  |
| Grid system                                                                                                   | UTM zone 32N                                   | EPSG:16032                      |  |  |  |  |
| Latitude origin                                                                                               | Latitude origin 00° 00' 00.000" N              |                                 |  |  |  |  |
| Central meridian 009° 00' 00.000" E                                                                           |                                                |                                 |  |  |  |  |
| Scale factor on central meridian 0.9996                                                                       |                                                |                                 |  |  |  |  |
| False easting                                                                                                 | False easting 500 000 m                        |                                 |  |  |  |  |
| False northing 0 m                                                                                            |                                                |                                 |  |  |  |  |
| Notes<br>* The geodetic datum of Fugro's global GNSS correction data is ITRF2014, epoch 2021.162 (01/03/2021) |                                                |                                 |  |  |  |  |

Figure 1.5: Project geodetic and projection parameters.

### 1.4 Vertical Datum

The vertical datum for the Energinet Hesselø project is reduced to Mean Sea Level (MSL) utilising the DTU18 MSL Tide Model as a vertical offshore reference frame supplied by the Technical University of Denmark (DTU).



# 2. Mobilisation and Operations

The data was acquired using the survey vessel Fugro Pioneer.

Vessel mobilisation and verifications for the 3D-UHR seismic scope of the survey were undertaken between 20 February and 28 February 2021 alongside in the port of IJmuiden, the Netherlands, and at a calibration site within the survey area (see report F172145-REP-MOB-003).

Operations on the Fugro Pioneer occurred between 28 February and 10 March 2021. Details are provided in report F172145-REP-OPS-003.



# 3. Vessel Details and Instrument Spread

### 3.1 Vessel Details Fugro Pioneer

The Fugro Pioneer (Figure 3.1) is a 53 m vessel built at Damen Shipyards in 2014. Being purpose designed for the demanding environments in which Fugro's coastal fleet operate, the Fugro Pioneer has excellent weather capabilities and is an ideal platform for 2D UHRS and geophysical surveys.



Figure 3.1: Fugro Pioneer

The Fugro Pioneer is equipped for 24-hour operations with space for a maximum of 31 persons.

### 3.2 Instrument Spread Fugro Pioneer

The equipment used for the survey is presented in Table 3.1.

| Requirement            | Equipment                                                                |
|------------------------|--------------------------------------------------------------------------|
| Primary GNSS           | Fugro StarPack GNSS receiver with StarFix.G2+ corrections                |
| Secondary GNSS         | Fugro StarPack GNSS receiver with StarFix.G2+ corrections                |
| MRU and heading sensor | IXSEA Hydrins, IXBLUE Octans                                             |
| Multibeam echosounder  | Dual Head Kongsberg EM2040                                               |
| Sound velocity probe   | 2x SAIV CTD                                                              |
| Sound velocity sensor  | 1x Valeport Mini SVS installed near MBES head with 1x spare              |
| Tidal heights          | Fugro StarPack GNSS receiver with Starfix.G2+ corrections                |
| 3D-UHR Seismic Source  | 2 x Fugro MLSS (700 J, 360 Tips [160, 120, 80] @ 0.52 m, 0.67 m, 1.12 m) |

| Table | 3.1: | Equi | pment | List |
|-------|------|------|-------|------|



| Requirement             | Equipment                                                            |
|-------------------------|----------------------------------------------------------------------|
| 3D-UHR Seismic Receiver | 4 x Geometrics 48 Channel, 1 m Group Interval Multi-Channel Streamer |

For full details of the Fugro Pioneer including weather limitations, vessel offsets and field procedures refer to Fugro report F145225-REP-OPS-003.

## 4. Results

### 4.1 Regional Geological Setting

The geological record at the HOWF site has been heavily influenced by the Sorgenfrei– Tornquist Zone. This is a fault system with a south-east to north-west orientation, located between Skåne in southern Sweden, the Kattegat and northern Jutland (Figure 4.1). It forms the south-western boundary of the Baltic Shield (Erlström and Sivhed, 2001). The fault system has been active since the Palaeozoic and has been re-activated multiple times, most recently during the Quaternary (Jensen et al., 2002), as result of isostatic (re)adjustments following ice sheet advances and retreats. One of the major faults of the Sorgenfrei–Tornquist Zone, the Børglum Fault, is located in the northern part of the HOWF site, and has a south-east to north-west orientation (Figure 4.1). The Børglum Fault is associated with a large pre-Quaternary depression, which influenced the depositional patterns during the Quaternary.

The bedrock at the HOWF site consists of Jurassic sandy mudstone and Upper Cretaceous limestones and glauconitic sandstones (Figure 4.2; Erlström and Sivhed, 2001).

During the Pleistocene, the Scandinavian Ice Sheet advanced and retreated several times in northern Jutland and the Kattegat. This resulted in the accumulation of a series of glacial tills and interglacial lacustrine and marine deposits (Jensen et al., 2002; Larsen et al., 2009). In addition, the repeated ice-sheet advance and retreat also formed a complex series of ice-terminal ridges (terminal moraines or push-moraines). These can still be recognised in the geomorphology of the islands and bathymetry of the southern Kattegat. During the relative sea level rise in the Late Glacial period (Late Weichselian; 16.0 to 12.6 ka BP), a thick package of glaciomarine clay was deposited (Jensen et al., 2002; Houmark-Nielsen and Kjær, 2003). Figure 4.3 illustrates paleogeography and depositional environments during the Weichselian in the wider Kattegat area.

In the early Holocene or Postglacial period (~10.5 to 12.6 ka BP) the relative sea level dropped due to isostatic rebound. This resulted in erosion of Late Weichselian deposits and is evidenced by an unconformity in the larger Hesselø area (Jensen et al., 2002; Bendixen et al., 2015, 2017; GEUS, 2020). Due to the ongoing eustatic sea-level rise, the area was once again inundated, and sediment was deposited in a transgressive, shallow marine environment between 11.7 to 10.8 ka BP. During this time a freshwater lake (Ancylus Lake) was present in the Baltic Sea. Between 11.9 and 9.1 ka BP, the Ancylus Lake drained via the Dana river system through the Storebælt in the south-east, into the Kattegat and resulted in the deposition of coastal sediments in the Hesselø area. From 9.1 ka BP the Holocene marine



transgression continued, and a thin layer of marine sediment was deposited (Bendixen et al., 2015, 2017).

Figure 4.4 presents interpretative profiles of the shallow geology at and in close proximity of the HOWF site, based on information available in public domain (Jensen et al., 2002; Bendixen et al., 2015).



Figure 4.1: Structural setting of the southern Kattegat and the Sorgenfrei–Tornquist Zone (after GEUS, 2020).





Figure 4.2: Bedrock geology (left image) and depth to the base of Quaternary (right image) at the HOWF site (modified after GEUS, 2020). Profiles are presented in Figure 4.4.





Figure 4.3: Palaeogeographies during the Weichselian in the Kattegat area (after Houmark-Nielsen and Kjær, 2003). The yellow star indicates the approximate location of the HOWF site





Figure 4.4: Interpretative profiles of the shallow geology at/near the HOWF site; profiles A–A' and B–B' from Jensen et al. (2002) and profile C–C' from Bendixen et al. (2015). See Figure 4.2 for the location of the profiles.



### 4.2 Seismostratigraphic Framework

Table 4.1 presents an overview of the interpreted seismostratigraphic units and associated horizons. Figure 4.5 and Figure 4.6 present seismic profiles across the OSS1 and OSS2 sites to give an overview of the spatial distribution of the seismostratigraphic units.

In the OSS sites, five seismostratigraphic units were interpreted in the 3D-UHR data in the top 60 m BSF. Seven different horizons represent unit boundaries, except for Horizons H11, H12 and H15, which are interpreted as internal surfaces separating different seismic facies within Unit D.

All horizons correspond to the horizons interpreted in the 2D-UUHR data (refer to Geophysical Survey Report (WPA scope): F172145-REP-GEOP-001).

Horizon H30 and H35, which were interpreted in the 2D-UUHR dataset as the base of Unit F and Unit G, respectively, were not interpreted in the OSS sites. Horizon H30 was not observed in both OSS sites. Horizon H35 was observed in the eastern part of the OSS1 site at a depth greater than 60 m BSF (i.e. below the interpretation window specified in the scope of work for WPD). This means that Unit F and Unit G are not present in the top 60 m BSF in the OSS sites.

The OSS1 site is located at the western margin of the large pre-Quaternary depression. The north-eastern part of the OSS1 site is influenced by the presence of this depression, and the thickness of the Holocene and Weichselian units (Units A to E) increase towards the north-east.

The OSS2 site, which is located 12 km to the south of the OSS1 site, has endured more glaciotectonism during the Weichselian. This is supported by the limited thickness of the undisturbed glaciomarine and glaciolacustrine deposits of Unit D and the increased thickness and shallow depth of glaciotectonised deposits of Unit E.



#### Table 4.1: Overview of seismostratigraphic units at the OSS sites.

|                                   | Horizon [Colour]                                                                                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                           |                                              | Previous Studies <sup>2)</sup>     |                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|------------------------------------|------------------------------------|
| Unit                              | Тор                                                                                                                                                                      | Base                                                      | Seismic Character                                                                                                                                                                                                                                                                                                               | Expected Soil Type <sup>1)</sup>                                                                                                                   | Age                       | Depositional Environment                     | Jensen et al.<br>(2002)            | Bendixen et al. (2015,<br>2017)    |
| Holocene                          | H00<br>[seafloor]                                                                                                                                                        | H10                                                       | Acoustically transparent or low to medium-amplitude stratified reflectors                                                                                                                                                                                                                                                       | CLAY to clayey medium SAND or<br>sandy GYTTJA; interlaminated to<br>interbedded CLAY and SILT or<br>medium SAND with shells and<br>shell fragments | Holocene                  | Marine, deltaic to shallow marine            | Н                                  | PG                                 |
| D                                 | H10                                                                                                                                                                      | H20<br>H11 (internal)<br>H12 (internal)<br>H15 (internal) | Dominantly, low to high-amplitude parallel reflectors.<br>Locally in the upper part, channel-like features with infill<br>characterised by high-amplitude reflectors (base<br>reflector H11).<br>Locally, acoustically transparent to chaotic (base<br>reflector H12).<br>Generally, more chaotic below internal reflector H15. | CLAY with occasional laminae of<br>SILT and/or SAND, locally sandy                                                                                 | Weichselian               | Glaciomarine, glaciolacustrine to<br>fluvial | LG I & LG II<br>(16 to 13.5 ka BP) | LG I & LG II<br>(16 to 12.6 ka BP) |
| E                                 | H20                                                                                                                                                                      | H25                                                       | Acoustically semi-transparent to chaotic with locally<br>steeply inclined internal reflectors                                                                                                                                                                                                                                   | CLAY, locally with sand beds                                                                                                                       | Weichselian               | Glaciomarine and/or glacial deposits         | GL                                 | WG II                              |
| F                                 | Unit is not                                                                                                                                                              | present in the OS                                         | 5S1 and OSS2 sites                                                                                                                                                                                                                                                                                                              |                                                                                                                                                    |                           |                                              |                                    |                                    |
| G                                 | G Unit is not present in top 60 m in the OSS1 site and not present in the OSS2 site                                                                                      |                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                           |                                              |                                    |                                    |
| Н                                 | H20?<br>H25                                                                                                                                                              | H50                                                       | Variable, either medium-amplitude parallel reflectors, or<br>acoustically semi-transparent, or a chaotic<br>(structureless) seismic character                                                                                                                                                                                   | SAND, CLAY, CLAY TILL and/or<br>SAND TILL                                                                                                          | Pleistocene               | Glacial, periglacial and/or<br>glaciomarine  | -                                  | -                                  |
| I                                 | H25<br>H50                                                                                                                                                               | N/A                                                       | Low to medium-amplitude low-frequency parallel reflectors; Locally acoustically (semi-)transparent                                                                                                                                                                                                                              | Sandy MUDSTONE, LIMESTONE<br>and glauconitic SANDSTONE                                                                                             | Jurassic to<br>Cretaceous | Marine                                       | BR                                 | -                                  |
| Notes:<br>1) Based or<br>Units A, | Notes:         1) Based on historic geotechnical data:         Units A, B, C and D and I from GEUS (2020)         Units F, B, UNITS A, B, C and D and I from GEUS (2020) |                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                           |                                              |                                    |                                    |

Units E and H from Jensen (2002); Bendixen et al. (2015; 2017); Andrén et al. (2015a; 2015b)

2) The units were correlated to seismostratigraphic units and age dating provided in previous studies of the southern Kattegat Figure 4.4 - Jensen et al., 2002; Bendixen et al., 2015, 2017), where: H = Holocene, PG = Postglacial, LG = Late Glacial, GL = Glacial, WG = Weichselian Glacial, BR = Bedrock



### An overview of the interpreted horizons and their depth range is provided in Table 4.2.

| llevizor | Description                | Depth Rang   | je in OSS1 | Depth Range in OSS2 |           |
|----------|----------------------------|--------------|------------|---------------------|-----------|
| ΠΟΠΖΟΠ   |                            | MSL [m]      | BSF [m]    | MSL [m]             | BSF [m]   |
| H10      | Base Holocene              | -33 to -38   | 1 to 5     | -32 to -34          | 1 to 5    |
| H11      | Internal horizon in Unit D | -34 to -46   | 2 to 14    | -                   | -         |
| H12      | Internal horizon in Unit D | -34 to -64   | 2 to 32    | -                   | -         |
| H15      | Internal horizon in Unit D | -51 to -72   | 19 to 39   | -                   | -         |
| H20      | Base of Unit D             | -55 to -81   | 23 to 49   | -33 to -47          | 23 to 48  |
| H25      | Base of Unit E             | -59 to -134  | 27 to 101  | -56 to -69          | 27 to 101 |
| H50      | Base of Unit H             | -100 to -113 | 68 to 81   | -87 to -99          | 68 to 81  |

Table 4.2: Depth range of the interpreted horizons at the OSS sites.







Figure 4.6: Inline 12405. Overview of the seismostratigraphic units in OSS2.



### 4.3 Seismostratigraphic Units

#### 4.3.1 Unit Holocene

Unit Holocene represents the combination of all the Holocene units as defined in WPA (Unit A, Unit B and Unit C). The individual Holocene units are not seismically resolved in the 3D-UHR data and are therefore combined into one Unit Holocene.

Unit Holocene is present across the entire OSS1 and OSS2 sites. In the OSS1 site, Unit Holocene varies in thickness between 1 m and 5 m, showing an increase in thickness towards the north-eastern corner (Figure 4.7). Within OSS2 the unit varies in thickness between 1 m and 2 m in the east and between 2.5 m and 3 m in the west (Figure 4.8).

The internal seismic character of Unit Holocene varies from transparent to low to mediumamplitude internal reflectors (Figure 4.9).

Unit Holocene is interpreted to represent deposits varying from marine, deltaic to shallowmarine environments.



Figure 4.7: Thickness map of Unit Holocene in metres at the OSS1 site.





Figure 4.8: Thickness map of Unit Holocene in metres at the OSS2 site.



Figure 4.9: Inline 367 (OSS1). Data example of Unit Holocene and Unit D.

#### 4.3.2 Unit D

Unit D is present across the entire OSS1 site with thickness varying between 21 m and 45 m (Figure 4.10). The thickness increases towards the east. At the OSS2 site, Unit D is only locally present in the eastern part, and reaches a maximum thickness of approximately 13 m (Figure 4.11).

Within Unit D three internal horizons (H11, H12 and H15) were interpreted at the OSS1 site. Within the OSS2 site, these internal horizons are not present. The general seismic character of Unit D is defined by low to medium amplitude parallel reflectors (Figure 4.12, Figure 4.13).



In Unit D, high amplitude positive anomalies are common in the OSS1 site, interpreted as possible gravel, cobbles and/or boulders (see Section 4.4.2).

Horizon H11 is characterised as a negative reflector with an erosional character and represents the base of a large channel, which infill is stratified, characterised by high amplitude parallel reflectors. It is predominantly present in the eastern part of the OSS1 site (Figure 4.13; Figure 4.14).

Horizon H12 also represents a negative reflector and denotes the base of channel-like features, whose infill has a transparent seismic character. Occasionally some vague parallel reflectors can be observed within the transparent facies. It is predominantly present in the eastern part of the OSS1 site.

Horizon H15 is a flat to undulating high amplitude positive reflector. The seismic character of Unit D below Horizon H15 is generally more chaotic compared to that above Horizon H15.

In the OSS2 site, the low to medium amplitude parallel reflectors are slightly more distorted compared to the OSS1 site.

Unit D is due to its seismic character, stratigraphic position and geotechnical properties interpreted as predominantly Late Glacial clays deposited in a glaciomarine and glaciolacustrine environment. The infill of channels underlain by Horizon H11 are interpreted to be deposited in a fluvial and/or tidal environment and the transparent facies underlain by Horizon H12 are interpreted as mass transport deposits (see Section 4.4.6).



Figure 4.10: Thickness map of Unit D in metres at OSS1 site.





UGRO



Figure 4.11: Thickness map of Unit D in metres at the OSS2 site.



Figure 4.12: Crossline 2005 in OSS1. Data example of Unit D, Unit E and Unit H.



Figure 4.13: Crossline 4151 in OSS1. Data example of Unit D and Unit E.



Figure 4.14: Depth to internal Horizon H11 (metres MSL) in Unit D at the OSS1 site.

#### 4.3.3 Unit E

Unit E is present across both OSS1 and OSS2 sites. The unit varies substantially in thickness at the OSS1 site (Figure 4.15) between 0.6 m in the west and 59 m in the east. At the OSS2 site the unit varies in thickness between 15 m in the central part and 36 m in the west and southeast (Figure 4.16).

Unit E is topped by Horizon H20 and its base is represented by Horizon H25. The internal seismic character of Unit E is semi-transparent to chaotic (Figure 4.5, Figure 4.12, Figure 4.13, Figure 4.17). Locally, laterally limited steep internal reflectors are present (Figure 4.6), what suggests that Unit E is locally glacially deformed (see Section 4.4.5).





Figure 4.15: Thickness map of Unit E in metres at the OSS1 site.



Figure 4.16: Thickness map of Unit E in metres at the OSS2 site.





Figure 4.17: Crossline 9066 in OSS2. Data example of Unit E, Unit H and Unit I.

#### 4.3.4 Unit H

Unit H is present in the western part of the OSS1 site and in the entire OSS2 site. In the OSS1 site, it varies in thickness between a couple of metres in the east, where it has been cut by the overlying Unit E (Figure 4.18), to more than 49 m in the west, where it forms an east to west oriented ridge.

In the OSS2 site, it varies from typical thicknesses of 25 m to 30 m in the east and west of the site to approximately 39 m in the central part, forming a south-west to north-east oriented ridge (Figure 4.19).

The internal seismic character of Unit H is very variable. At the OSS1 site it is acoustically transparent to chaotic (Figure 4.5, Figure 4.12), while at the OSS2 site it is semi-transparent with some medium amplitude parallel reflectors (Figure 4.6, Figure 4.17).

Unit H is interpreted as early Pleistocene sediments, deposited in glacial, periglacial and/or glaciomarine conditions. The observed ridges could represent remnants of moraine ridges of pre-Weichselian glaciations.





Figure 4.18: Thickness map of Unit H in metres at the OSS1 site.



Figure 4.19: Thickness map of Unit H in metres at the OSS2 site.

#### 4.3.5 Unit I

Unit I is interpreted as pre-Quaternary bedrock and expected to be present over the entire OSS1 and OSS2 sites. The top is represented by Horizon H50 or Horizon H25 and forms an angular unconformity (Figure 4.5, Figure 4.6, Figure 4.17).

In the western part of the OSS1 site, the top of Unit I is located between 68 m and 81 m BSF (Figure 4.20). In the eastern part of the OSS1, at the margin of the large pre-Quaternary depression, the top of Unit I is below the penetration depth of the 3D-UHR data. In this part of the OSS1 site, the base of Unit E (Horizon H25) incises deeply into Unit I.

At the OSS2 site the top of Unit I is situated between 86 m and 98 m BSF, increasing slightly in depth in the central and north-eastern part of the site (Figure 4.21).



The internal seismic character shows predominantly low to medium amplitude, low frequency parallel reflectors (Figure 4.6; Figure 4.17). Locally at both sites it can be acoustically semi-transparent.

Where Unit I shows parallel reflectors, the top (Horizon H50) represents an angular unconformity with the overlying units.

Based on GEUS (2020) the bedrock at the OSS1 site represents Jurassic sandy mudstone and the bedrock at the OSS2 site Upper Cretaceous limestone and glauconitic sandstone.



Figure 4.20: Depth to Horizon H50 (top bedrock) in metres BSF at the OSS1 site.



Figure 4.21: Depth to Horizon H50 (top bedrock) in metres BSF at the OSS2 site.



### 4.4 Geological Features

#### 4.4.1 Local Enhanced Amplitude Anomalies - Postglacial Anomalies

Locally, enhanced amplitude parallel reflectors, with a varying spatial extent were observed in Unit Holocene, Unit D and Unit E in both OSS sites (Figure 4.22; Figure 4.23). They are particularly abundant in the OSS2 site. Occasionally acoustic blanking and/or signal distortion is observed below these anomalies. They are typically topped by a high-amplitude negative reflector. The width of these features varies from approximately 10 m up to 100 m and they vary from circular to more cloud shaped in plan view (Figure 4.23).



Figure 4.22: Inline 12400 in OSS2. Data example of Postglacial anomalies.



Figure 4.23: Depth slice example of the OSS2 site (31.75 m MSL) in Unit Holocene with Postglacial anomalies (white dots).



#### Correlation with Geotechnical Data and Interpretation

The local enhanced amplitude anomalies were also observed in the SBP and 2D-UUHR data from WPA (report F172145-REP-GEOP-001). It is not likely that these features represent acquisition artefacts. These features are considered to have a geological origin. The exact origin cannot be determined with confidence. Several explanations for these features are described below.

Four (4) Postglacial anomalies were sampled for ground truthing (Gardline, 2021). Two (2) geotechnical borehole locations are in the OSS2 site (Figure 4.23). Representative data examples showing the geotechnical borehole locations projected on 3D-UHR seismic sections are presented in Figure 4.24 and Figure 4.25.

The top of the anomalies, as observed in the seismic data, occurs in Unit A. Geotechnical boreholes penetrating these anomalies indicate that their tops occur within very low strength CLAY (Unit Holocene), which is underlain by a bed of SAND varying in thickness between 0.1 m and 1.2 m. This sand bed is associated with Unit B or Unit C and its base is associated with Horizon H10.

This SAND bed is slightly to highly calcareous and includes (frequent) shell fragments. It is locally silty, gravelly and may contain cobbles (described as 'cobbly' (Gardline (2021)). At the Anorm\_2 geotechnical borehole location, the top of the SAND bed corresponds to a local high amplitude positive reflector (Figure 4.25).

Below the SAND bed, slightly to highly calcareous, low to medium strength CLAY with black organic staining or slight organic odour is present.

The geotechnical borehole data show that the soil conditions and properties vary over the vertical interval covered by the anomaly: i.e. the top of the anomaly may coincide with CLAY, whilst lower parts of the anomaly are associated with slightly to highly calcareous SAND. Cemented sand was not observed at the sampled locations.

Possible origins for these local enhanced amplitude anomalies are listed below:

The Postglacial anomalies appear to be related to the SAND beds observed in Unit B and Unit C, and associated with Horizon H10. Bendixen et al. (2015) and Jensen et al. (2002) reported that PG II (corresponding to Unit B in this report) comprises laminated SILT and CLAY. This deviates from the geotechnical properties of Unit B as observed at the Anorm\_2 borehole location and the base of Unit B at Anorm\_1: i.e. SAND. This may suggest that Unit B and Unit C are generally associated with SILT and CLAY and that local occurrences of SAND (e.g. very local sand bars) are present. This lateral change in soil conditions (and possible accumulation of gravel and cobbles within the sand bed) may be the cause for a relatively large acoustic contrast and hence a local enhanced amplitude anomaly.


- Acoustic blanking and signal distortion were observed below some of these anomalies. This suggests that (small amounts of) free gas may present in sediment below the anomalies and that the anomalies themselves may reflect the approximate position of where the gas is trapped below or within the clayey sediments of Unit A. At these shallow depths, sealing capacity of normally consolidated soils is expected to be low and possibly insufficient to contain gas accumulations. The natural buoyancy of the free gas bubbles may be in equilibrium with capillary forces in pores within the fine-grained sediments of Unit A.
- The northern Kattegat is known for methane-derived authigenic carbonates (MDAC) or 'bubble reefs' (Jensen et al., 1992). These features are associated with gas seeps and/or expulsion and are evidenced by the presence carbonate-cemented sandstone structures (e.g. mounds). Where they are associated with active gas seepage, they are often accompanied by a diverse marine ecosystem (Judd and Hovland, 2007). The geotechnical borehole data at the investigated anomalies do not indicate the presence of a carbonatecemented sandstone. Within the sampled sands (Unit B, Unit C and Horizon H10), only (small) shell fragments were described (i.e. not a diverse marine ecosystem). From this it may be concluded that the targeted anomalies do not resemble fully developed MDAC features. In addition, these features are covered by recent sediment that may suggest that gas seepage activity has ceased in past, effectively stopping authigenic carbonate formation. As such, these features may resemble an early stage form of an MDAC at the onset of carbonate cementation (as evidence by varying carbonate contents with the sampled sands).

Only a limited number of local enhanced amplitude anomalies were sampled. The results of the acquired geotechnical data and integration with the seismic data result in various potential origins of these features. A definite, single origin for the sampled features could however not be deduced. These features could result from various processes. Therefore, the origins of the sampled features and the non-sampled features remain speculative without further ground truth information (e.g. soil sampling and CPT testing, geochemical analysis, high resolution geological logging).





Figure 4.24: Inline 12410 in OSS2. Borehole log of Anorm\_1 projected on a 3D-UHR seismic line.



Figure 4.25: Inline 12370 in OSS2. Borehole log of Anorm\_2 projected on a 3D-UHR seismic line.

### 4.4.2 Boulders, Cobbles and Gravel

In the OSS1 site, point anomalies were observed in Unit D, Unit E and Unit H. A total of 576 positive point anomalies were interpreted in the OSS1 site, where they are particularly abundant in Unit D. No point anomalies were observed in the OSS2 site. In the unmigrated 3D-UHR data, they correspond with diffraction hyperbolas (Figure 4.26;Figure 4.27).

The point anomalies or hyperbolic diffractions are interpreted as predominantly gravel, cobbles and/or boulders. As Unit D is interpreted as glaciomarine and glaciolacustrine deposits, these point anomalies may possibly represent ice-rafted debris.





Figure 4.26: Inline 434 in OSS1. Data example of a diffraction hyperbola in Unit D in unmigrated 3D-UHR data.



Figure 4.27: Depth slice example (41.5 m MSL) of a point anomaly (the same as in figure above) in migrated 3D-UHR data.

### 4.4.3 Buried Channels

Horizon H11 is a negative reflector that forms the base of channels in the upper part of Unit D. The H11 channels are predominantly present in the eastern part of the OSS1 site, but one small channel feature is also observed in the western part of this site (Figure 4.9). The thicknesses of channel-fills vary and can be up to 11 m. The seismic character of the channel infill is defined by high amplitude parallel stratified reflectors. This is in contrast with the stratified seismic character from the rest of Unit D, which is generally characterised by low to medium amplitude reflectors.

The channels related to Horizon H11 are interpreted to be of a fluvial or tidal origin.



### 4.4.4 Faults

Faults are expected to occur in the sites associated with the Sorgenfrei–Tornquist (fault) Zone. The sub-surface architecture, changes in unit thickness and erosive contact between units within the pre-Quaternary depression may imply tectonic activity during Quaternary.

Large faults were not identified in the seismic data. They may occur at deeper levels, beyond the penetration depth of the seismic data. Faults are likely to be present in the bedrock (Unit I).

Small-scale faulting was observed in Unit D, which is possibly related to mass transport processes (see Section 4.4.6).

#### 4.4.5 Glacial Deformation

The HOWF site have been affected by glacial processes during the Quaternary. In particular, evidence of the Weichselian ice movement can be expected (GEUS, 2020). Ice sheet advance and retreat cycles may have deformed the Weichselian and older deposit resulting in folding or thrusting. They are present in the seismic data as undulating and steeply inclined, discontinuous reflectors, respectively

In both OSS sites, locally, Unit D is slightly folded and Unit E shows wavy and steeply inclined, discontinuous reflectors (Figure 4.6), which may imply glacial deformation.

In the HOWF site, Unit E increases in thickness and the seismic character becomes more chaotic towards the south. This may be attributed to increased glacial deformation due to ice sheet advance south of the HOWF site (GEUS, 2020).

#### 4.4.6 Mass Transport Deposits

Evidence for mass transport deposits (MTDs) was observed at multiple stratigraphic levels in Unit D in the HOWF site. These MTDs are associated with different seismic characters, which may be a result of different types of past sediment failure. One stratigraphic level of MTDs was observed in the OSS1 site, which is described below. No MTDs were observed in the OSS2 site.

Channel-like features demarcated at the base by Horizon H12 occur towards the top of Unit D. These channel-like features are present in the eastern part of the OSS1 site and reach thickness up to approximately 31 m (Figure 4.28). The seismic character of the channel infills varies from transparent to chaotic with the presence of irregular, wavy reflectors (Figure 4.13; Figure 4.29:).

To the west of Horizon H12, Unit D comprises intervals which display small faults separating (rotated) blocks of sediments with intact stratification (Figure 4.29; Figure 4.30).

Horizon H12 appears to be on the same stratigraphic level on which these small faults terminate (i.e. decollement or glide plane). These faulted areas generally display normal fault



movements, creating either horst and graben-like structures or rotated sediment blocks and transition laterally into undisturbed Unit D (i.e. parallel reflectors).

The MTDs levels in Unit D show deviating seismic characters from the dominant character (i.e. parallel layered reflectors). They are likely the result of multiple large-scale sediment failures, triggered by fault movement along the Sorgenfrei–Tornquist Zone. Temporal variation in tectonic activity during the deposition of Unit D may have influenced the stratigraphic position of MTD occurrences in the unit.

Where faulted, Unit D may have been subject to (translational) failure, resulting in blocks of undeformed Unit D bounded by faults. In case the seismic character is chaotic or transparent, sediment deformation was likely higher and past sediment failure likely represented slumps. The geotechnical behaviour of these remobilised deposits may differ from the surrounding non-mobilised Unit D.



Figure 4.28: Thickness of channel-like features at H12 in metres BSF at the OSS1 site.





Figure 4.29: Inline 485 in OSS1. Data example of MTD and faulting in Unit D.



Figure 4.30: Depth slice example (49 m MSL) in the OSS1 site showing faulting and MTD in Unit D.



# 5. Processing and Interpretation Methodology

### 5.1 Data Processing

Detailed description of the processing flow applied to the 3D-UHR seismic data acquired during the survey is presented in the seismic processing report in Appendix C.

### 5.2 Data Interpretation

The following strategy was applied for 3D-UHR data interpretation:

- Compilation of historical geotechnical, geophysical and geological data from clientprovided sources, literature and Fugro database;
- Interpretation of seismically distinct units and horizons in the time-domain applying the interpretation framework used for the 2D-UUHR data (refer to 'Geophysical Survey Report (WPA scope)' F172145-REP-GEOP-001);
- Identification and interpretation of key geological features, which can be potential hazards (geohazards) for offshore infrastructures;
- Time-depth conversion of horizons and features using a RMS velocity model based on velocity picking;
- Creation of polygons encompassing the horizon interpretation to define areas where soil units and horizons were not observed and areas where soil units and horizons were not present.
- Gridding (and contouring) of unit boundaries/horizons in metres BSF and in metres below MSL and isochore unit thicknesses in metres.

The following needs to be considered for the 3D-UHR data:

- The quality of the 3D-UHR data is good with a typical penetration depth of over 100 m BSF;
- Interpretation was initiated by manually interpreting a framework of mainlines and crosslines with approximately 10 m to 50 m distance. This was followed by applying a 3D interpolation algorithm to create a 3D horizon interpretation surface.
- Gridding of horizons was performed within IHS Kingdom Suite 2018. All gridding was done with the 'flex gridding' algorithm and parameters were kept the same among all 3D-UHR horizons. The cell size was 0.5 m by 0.5 m. The search distance was set at 0.5 m, to make sure there were no gaps in the grids. Minimum curvature was applied, and smoothness was set to halfway (6).

### 5.3 3D-UHR Seismic Data Quality

The acquired 3D-UHR Seismic data was QC'd onboard on a line by line basis. Observer and Navigation logs were checked after acquisition and any problems noted and/or rectified.



A vertical resolution of at least 0.3 m was achieved and a typical penetration of more than 100 m BSF, which is better than the technical requirements of 60 m BSF (Energinet, 2020). The vertical resolution and penetration is generally better in the OSS1 site compared to the OSS2 site. This is due to the presence of significantly more Late Glacial clays (Unit D) at the OSS1 site and more glacially deformed deposits at the OSS2 site (Unit E).

The on-board quality control consisted of the following processes:

### 5.3.1 Shot gathers display

Shot gathers were checked during acquisition to identify problems in the data such as bad/dead channels, faulty streamers, to analyse noise levels, identify potential noise sources and check offsets (Figure 5.1).



Figure 5.1: Shot gather display from EOL QC .pdf

### 5.3.2 Near Trace Gathers

Near trace gathers were generated to control the source-receiver offset along the line and to assess the presence of bad shots and recording system problems Figure 5.2.





Figure 5.2: Near Trace Gather used for data QC.

#### 5.3.3 Brute Stacks

Brute stacks were generated for assessing the data a quality and noise levels.





### 5.3.4 Noise Plots

The noise plots are based on RMS amplitude analysis within two time windows on recorded shots. Each shot is stacked to produce one trace per shot display of the RMS amplitude along



the entire line. The signal RMS amplitude plots are calculated using a parabolic time window starting at the sea bed to include the primary signal down to include the first water bottom multiple (Figure 5.4). For this survey this time window was set at 30ms in length. The noise RMS amplitude plots are based on a time window at the bottom of the shot record. For this survey the top of the analysis window was set at 110ms across the shot record, and the bottom of the analysis window was set at 150ms across the shot record (Figure 5.5).



Figure 5.4: RMS Noise Analysis Windows for signal and noise analysis. Signal analysis window is green and the Noise analysis window.







Figure 5.5: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X-axis indicates shot point number, Y-axis indicates channel number. Source 1 Cable 1 to 4 is shown here.

Figure 5.6: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X-axis indicates shot point number, Y-axis indicates channel number. Source 2 Cable 1 to 4 is shown here.



Figure 5.7: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X-axis indicates shot point number, Y-axis indicates channel number. Source 1 Cable 1 to 4 is shown here.





Figure 5.8: RMS Amplitude Signal Plots for the different source cable combinations (microbars). X-axis indicates shot point number, Y-axis indicates channel number. Source 2 Cable 1 to 4 is shown here.

### 5.3.5 Start-End of line Noise Plots

The Start-End of line (SOL) noise plots are generated using ten consecutive noise records at the start and end of each line. The RMS amplitude analysis is done for each of the ten noise files, each noise file being stacked to give one trace per file. See Figure 5.9 for an example of a Start of Line Noise file. The noise plots generated from the noise files collected at SOL and End of Line (EOL) were used to assess the noise levels in acquisition due to the effects weather conditions (sea state) and are used in conjunction with the seismic data to assess the threshold at which acquisition should stop.





Figure 5.9: Start-End of line Noise File.

### 5.3.6 Navigation comparison

After navigation merge, the near (channel 1), mid (channels 12 and 24) and far (channel 48) offsets direct arrival times were calculated from the navigation P190 files and compared with the direct arrival picked offsets on the data to check consistency and ensure offset stability (Figure 5.10).





Figure 5.10: Comparison between navigation calculated and direct arrival picked offset.

### 5.3.7 Navigation, Coverage and Feather Angle Quality Control

Navigation quality control was made using VBA Proc and the feather angle quality control was made using the end of line plots generated by Starfix NG, see Figure 5.12. Coverage was monitored using CoverPoint with Surveyors steering to the un-flexed bin grid to ensure the best coverage and infill designed based on the flexed bin grid coverage (Figure 5.11).

Rerun or infill was decided when the acquired lines were out of specification, the coverage did not meet requirements or data quality was sub-standard.





Figure 5.11: Coverage as seen on CoverPoint.



Figure 5.12: Feather Angle plot for quality control.



## 6. References

Andersen, S. (1998). Israndslinier i Norden. Nordic Council of Ministers.

Andrén, T., Jorgensen, B.B., Cotterill, C. and Green, S. (2015a). IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere. Scientific Drilling, 20, 1-12.

Andrén, T., Jorgensen, B.B., Cotterill, C., Green, S. and the Expedition 347 Scientists (2015b). Expedition 347 summary, Proceedings of the Integrated Ocean Drilling Program, Volume 347.

Bendixen, C., Jensen, J.B., Boldreel, L.O., Clausen, O.R., Bennike, O., Seidenkrantz, M.-S., Nyberg, J., and Hübscher, C. (2015). *The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression*. Boreas 46(1), 53-68. <u>https://doi.org/10.1111/bor.12154</u>

Bendixen, C., Boldreel, L.O., Jensen, J.B., Bennike, O., Hübscher, C., and Clausen, O.R. (2017). *Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage*. Geo-Marine Letters 37, 579-591. <u>https://doi.org/10.1007/s00367-017-0513-7</u>

Erlström, M., and Sivhed, U. (2001). *Intra-cratonic dextral transtension and inversion of the southern Kattegat on the southwest margin of Baltica – Seismostratigraphy and structural development*. Sverige Geologiska Undersökning. Research Paper C 832.

Energinet. (2020). Geophysical survey, Hesselø offshore wind farm – Scope of Services – Enclosure 1 - Technical requirements, Document No. 20/03856-4, dated 01 July 2020.

Gardline, (2021). Preliminary borehole logs (PDF format) of four (4) locations within the HOWF site. Provided by Energinet to Fugro on 10 June 2021.

GEUS. (2020). General geology of southern Kattegat; the Hesselø wind farm area; Desk Study. GEUS Rapport 2020/53.

Houmark-Nielsen, M., and Kjær, K.H. (2003). *Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change*. Journal of Quaternary Science 18(8), 169-186. <u>https://doi.org/10.1002/jqs.802</u>

Jensen, P., Aagaard, I., Burke Jr., R.A., Dando, P.R., Jorgensen, N.O., Kuijpers, A., Laier, T., O'Hara, S.C.M. and Schmaljohann, R. (1992). 'Bubbling reefs' in the Kattegat: Submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps. Marine Ecology Progress Series, V. 83, P. 103-112.

Jensen, J.B., Petersen, K.S., Konradi, P., Kuijpers, A., Bennike, O., Lemke, W., and Endler, R. (2002). *Neotectonics, sea level changes and biological evolution in the Fennoscandian Border Zone of the southern Kattegat Sea*. Boreas 31(2), 133-150. <u>https://doi.org/10.1111/j.1502-3885.2002.tb01062.x</u>



Larsen, N.K., Knudsen, K.L., Krohn, C.F., Kronborg, C., Murray, A.S., and Nielsen, O.B. (2009). Late Quaternary ice sheet, lake and sea history of southwest Scandinavia – a synthesis. Boreas 38(4), 732-761. <u>https://doi.org/10.1111/j.1502-3885.2009.00101.x</u>



# Appendices

Appendix A Guidelines on Use of Report

Appendix B Charts

Appendix C 3D-UHR Processing Report

Appendix D Digital Deliverables



# **Appendix A**

Guidelines on Use of Report



This report (the "Report") was prepared as part of the services (the "Services") provided by Fugro for its client (the "Client") and in accordance with the terms of the relevant contract between the two parties (the Contract"). The Services were performed by Fugro in accordance with the obligations in the Contract and based on requirements of the Client set out in the Contract or otherwise made known by the Client to Fugro and any other information affecting the Services at the time; save that the extent to which Fugro relied on Client or third party information in carrying out the Services was set out in the Contract.

Fugro's obligations and liabilities to the Client or any other party in respect of the Services and this Report are limited to the extent and for the time period set out in the Contract (or in the absence of any express provision in the Contract as implied by the law of the Contract) and Fugro provides no other representation or warranty whether express or implied, in relation to the Services, or for the use of this Report, for any other purpose. Furthermore, Fugro has no obligation to update or revise this Report based on any future changes in conditions or information which emerge following issue of this Report unless expressly required by the provisions of the Contract.

The Services were performed by Fugro exclusively for the Client and any other party expressly identified in the Contract, and any use and/or reliance on the Report or the Services for purposes not expressly stated in the Contract, will be at the Client's sole risk. Any other party seeking to rely on this Report does so wholly at its own and sole risk and Fugro accepts no liability whatsoever for any such use and/or reliance.



# **Appendix B**

Charts



Charts (detailed below) have been presented as a separate PDF file.

| Chart Type                                                                     | Chart Name                                                                    |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 3D-UHR TRACK POSITION (COMMON DEPTH POINT)                                     | SN2020_031_Hesselo_OWF_01_NU_50k_OVERVIEW                                     |
| 3D-UHR TRACK POSITION (COMMON DEPTH POINT) AT OSS1 LOCATION                    | SN2020_031_Hesselo_OWF_02_NU_2'5k_TRK_3DUHR_OSS1                              |
| 3D-UHR TRACK POSITION (COMMON DEPTH<br>POINT) AT OSS2 LOCATION                 | SN2020_031_Hesselo_OWF_03_NU_2'5k_TRK_3DUHR_OSS2                              |
| DEPTH TO HORIZON H10 (METRES BSF & MSL) - BASE OF UNIT HOLOCENE - OSS1         | SN2020_031_Hesselo_OWF_04_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H10_OSS1              |
| DEPTH TO HORIZON H15 (METRES BSF &<br>MSL) - INTERNAL HORIZON IN UNIT D - OSS1 | SN2020_031_Hesselo_OWF_05_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H15_OSS1              |
| DEPTH TO HORIZON H20 (METRES BSF & MSL) - BASE OF UNIT D (OSS1)                | SN2020_031_Hesselo_OWF_06_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H20_OSS1              |
| DEPTH TO HORIZON H25 (METRES BSF & MSL) - BASE OF UNIT E (OSS1)                | SN2020_031_Hesselo_OWF_07_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H25_OSS1              |
| DEPTH TO HORIZON H50 (METRES BSF & MSL) - BASE OF UNIT H (OSS1)                | SN2020_031_Hesselo_OWF_08_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H50_OSS1              |
| THICKNESS UNIT HOLOCENE & UNIT D<br>(METRES)                                   | SN2020_031_Hesselo_OWF_09_NU_2'5k_SBG_THICKNESS_U<br>NIT_HOLOCENE_UNIT_D_OSS1 |
| THICKNESS UNIT E & UNIT H (METRES)                                             | SN2020_031_Hesselo_OWF_10_NU_2'5k_SBG_THICKNESS_U<br>NIT_E_UNIT_H_OSS2        |
| GEOLOGICAL FEATURES CHART                                                      | SN2020_031_Hesselo_OWF_11_NU_2'5k_GEOF_OSS1                                   |
| DEPTH TO HORIZON H10 (METRES BSF & MSL) - BASE OF UNIT HOLOCENE - OSS2         | SN2020_031_Hesselo_OWF_12_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H10_OSS2              |
| DEPTH TO HORIZON H20 (METRES BSF &<br>MSL) - BASE OF UNIT D - OSS2             | SN2020_031_Hesselo_OWF_13_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H20_OSS2              |
| DEPTH TO HORIZON H25 (METRES BSF &<br>MSL) - BASE OF UNIT E - OSS2             | SN2020_031_Hesselo_OWF_14_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H25_OSS2              |
| DEPTH TO HORIZON H50 (METRES BSF & MSL) - BASE OF UNIT H - OSS2                | SN2020_031_Hesselo_OWF_15_NU_2'5k_SBG_DEPTH_BSF_M<br>SL_H50_OSS2              |
| THICKNESS UNIT HOLOCENE & UNIT D<br>(METRES)                                   | SN2020_031_Hesselo_OWF_16_NU_2'5k_SBG_THICKNESS_U<br>NIT_HOLOCENE_UNIT_D_OSS2 |
| THICKNESS UNIT E & UNIT H (METRES)                                             | SN2020_031_Hesselo_OWF_17_NU_2'5k_SBG_THICKNESS_U<br>NIT_E_UNIT_H_OSS2        |
| GEOLOGICAL FEATURES CHART                                                      | SN2020_031_Hesselo_OWF_18_NU_2'5k_GEOF_OSS2                                   |



# **Appendix C**

# **3D-UHR Processing Report**





# **3D-UUHR Processing Report**

Energinet Denmark Hesselø Geophysical Survey | Denmark, Inner Danish Sea, Kattegat

F172145-REP-PROC-002 01 | 19 April 2021 Complete Energinet Eltransmission A/S

# **ENERGINET**

## **Document Control**

### **Document Information**

| Project Title      | Hesselø Offshore Wind Farm, 3D Seismic Survey |
|--------------------|-----------------------------------------------|
| Document Title     | 3D-UUHR Processing Report                     |
| Fugro Project No.  | F172145                                       |
| Fugro Document No. | F172145-REP-PROC-002                          |
| Issue Number       | 01                                            |
| Issue Status       | Complete                                      |

### **Client Information**

| Client              | Energinet Eltransmission A/S                   |  |
|---------------------|------------------------------------------------|--|
| Client Address      | Tonne Kjærsvej 65, DK-7000 Fredericia, Denmark |  |
| Client Contact      | Nicky Hein Witt                                |  |
| Client Document No. | N/A                                            |  |

### **Revision History**

| Issue | Date        | Status   | Comments on Content | Prepared<br>By | Checked<br>By | Approved<br>By |
|-------|-------------|----------|---------------------|----------------|---------------|----------------|
| 01    | 19 Apr 2021 | Complete |                     | GS             | RC            | CIW            |

## **Project Team**

| Initials | Name                | Role                                                                    |
|----------|---------------------|-------------------------------------------------------------------------|
| MT       | Maria Theander      | Global Product Owner – Seismic Processing Marine Site Characterisation  |
| РВ       | Patrick Burn        | Operations Supervisor - Seismic Processing Marine Site Characterisation |
| GS       | Graeme Scott        | Inhouse Seismic Processing Geophysicist                                 |
| IW       | lain Walby          | Onboard Seismic Processing Geophysicist – Pioneer                       |
| SB       | Sanket Bhattacharya | Onboard Seismic Processing Geophysicist – Pioneer                       |
| CIW      | Chris Wright        | Geophysical Deliverables Coordinator                                    |



UGRO

## Contents

| 1.   | Introduction                                | 1  |
|------|---------------------------------------------|----|
| 1.1  | Scope of Work                               | 1  |
| 1.2  | Acquisition Configuration                   | 4  |
| 2.   | Processing 3D-UUHR                          | 5  |
| 2.1  | 3D-UUHR Processing Summary                  | 5  |
| 2.2  | Reformatting and Navigation Merge           | 6  |
| 2.3  | Swell Noise Attenuation                     | 7  |
| 2.4  | Preliminary Shot Statics                    | 10 |
| 2.5  | Linear Noise Attenuation                    | 12 |
| 2.6  | Surface Related Multiple Elimination (SRME) | 13 |
| 2.7  | Source and Receiver Deghosting              | 16 |
| 2.8  | Velocity Analysis                           | 19 |
| 2.9  | Tides and Final 3D Shot Statics             | 20 |
| 2.10 | Interpolation and Regularisation            | 22 |
| 2.11 | PASTA Statics, Final Mute and Stack         | 25 |
| 2.12 | Post Stack Kirchhoff Migration (PoSTM)      | 26 |
| 2.13 | Acquisition Footprint Filtering             | 27 |
| 2.14 | Post Stack Processing 1                     | 29 |
| 2.15 | Zero Phase                                  | 30 |
| 2.16 | Post Stack Processing 2                     | 31 |
| 2.17 | Output to SEG-Y                             | 38 |

# Appendices

| Appe | Appendix A Line Listings |  |  |
|------|--------------------------|--|--|
| A.1  | 3D-UUHR Lines            |  |  |
| Appe | Appendix B Deliverables  |  |  |
|      |                          |  |  |

# **Figures**

| Figure 1.1: Hesselø 3D-UUHR location overview                            | 2     |
|--------------------------------------------------------------------------|-------|
| Figure 1.2: Hesselø 3D-UUHR line plan for offshore substation 1          | 3     |
| Figure 1.3: Hesselø 3D-UUHR line plan for offshore substation 2          | 3     |
| Figure 2.1: Reformat: raw shots                                          | 6     |
| Figure 2.2: Reformat: low cut and geometrical spreading                  | 7     |
| Figure 2.3: Denoise: input shots                                         | 8     |
| Figure 2.4: Denoise: output shots                                        | 8     |
| Figure 2.5: Denoise: input stack                                         | 9     |
| Figure 2.6: Denoise: output stack                                        | 9     |
| Figure 2.7: Preliminary shot statics: input stack                        | 11    |
| Figure 2.8: Preliminary shot statics: output stack                       | 11    |
| Figure 2.9: LNA: input shots                                             | 12    |
| Figure 2.10: LNA: output shots                                           | 13    |
| Figure 2.11: SRME: input shots                                           | 14    |
| Figure 2.12: SRME: output shots                                          | 14    |
| Figure 2.13: SRME: input stack                                           | 15    |
| Figure 2.14: SRME: output stack                                          | 15    |
| Figure 2.15: Deghost: input shots                                        | 17    |
| Figure 2.16: Deghost: source & receiver deghost shots                    | 17    |
| Figure 2.17: Deghost: input stack                                        | 18    |
| Figure 2.18: Deghost: source & receiver deghost stack                    | 18    |
| Figure 2.19: Pegasus 3D velocity picking example on OS1                  | 19    |
| Figure 2.20: 3D OS1 timeslice 60-85 ms: without final statics            | 20    |
| Figure 2.21: 3D OS1 timeslice 60-85 ms: with final statics               | 21    |
| Figure 2.22: 3D OS1 xline 2000-2002: without final statics               | 21    |
| Figure 2.23: 3D OS1 xline 2000-2002: with final statics                  | 22    |
| Figure 2.24: 3D OS1 timeslice 60-85 ms: before regularisation            | 23    |
| Figure 2.25: 3D OS1 timeslice 60-85 ms: after regularisation             | 23    |
| Figure 2.26: 3D OS1 xline 2000-2002: before regularisation               | 24    |
| Figure 2.27: 3D OS1 xline 2000-2002: after regularisation                | 24    |
| Figure 2.28: 3D OS1: CMP gathers with final stacking mute overlaid       | 25    |
| Figure 2.29: 3D OS1 xline 2000-2002: prior to PoSTM                      | 26    |
| Figure 2.30: 3D OS1 xline 2000-2002: PoSTM                               | 27    |
| Figure 2.31: 3D OS1 zoomed timeslices: before KxKy footprint filtering   | 28    |
| Figure 2.32: 3D OS1 zoomed timeslices: after KxKy footprint filtering    | 28    |
| Figure 2.33: 3D OS1 inline 300: before post stack processing 1           | 29    |
| Figure 2.34: 3D OS1 inline 300: after post stack processing 1            | 29    |
| Figure 2.35: Zero phase: zoomed seabed before                            | 30    |
| Figure 2.36: Zero phase: zoomed seabed after                             | 30    |
| Figure 2.37: 3D OS1 inline 300: final time cube                          | 32    |
| Figure 2.38: 3D OS1 inline 300: final non migrated time cube             | 32    |
| Figure 2.39: 3D OS1 inline 300: final depth cube                         | 33    |
| Figure 2.40: 3D OS1 inline 300: final non migrated depth cube            | 33    |
| Figure 2.41: 3D summary OS1 timeslice 60-85 ms: raw cube                 | 34    |
| Figure 2.42: 3D summary OS1 timeslice 60-85 ms: final migrated time cube | 34    |
| Figure 2.43: 3D summary OS2 timeslice 60-85 ms: raw cube                 | 35    |
| F172145-REP-PROC-002 01   3D-UUHR Processing Report                      | TUGRO |

| Figure 2.44: 3D summary OS2 timeslice 60-85 ms: final migrated time cube | 35 |
|--------------------------------------------------------------------------|----|
| Figure 2.45: Final spectrum for previous 2D acquisition                  | 36 |
| Figure 2.46: Final spectrum for 3D                                       | 36 |
| Figure 2.47: 3D view OS1: final migrated time cube                       | 37 |
| Figure 2.48: 3D view OS2: final migrated time cube                       | 37 |
| Figure 2.49: Final migrated time stack OS1 EBCDIC example                | 38 |

## **Tables**

| Table 1.1: 3D-UUHR Acquisition parameters                           | 4  |
|---------------------------------------------------------------------|----|
| Table 1.2: 3D-UUHR Processing Grid Parameters Offshore Substation 1 | 4  |
| Table 1.3: 3D-UUHR Processing Grid Parameters Offshore Substation 2 | 4  |
| Table 2.1: 3D-UUHR Final mute parameters                            | 25 |
| Table 2.2: 3D-UUHR Time varying bandpass filter                     | 31 |
| Table A.1: 3D-UUHR Accepted lines processed                         | 2  |



# Abbreviations

| 3D-UUHR | Three-Dimensional Ultra Ultra High Resolution |
|---------|-----------------------------------------------|
| CDP     | Common Depth-point                            |
| СМР     | Common Mid-Point                              |
| DGPS    | Differential Global Positioning System        |
| FTP     | File Transfer Protocol                        |
| F-K     | Frequency - wave number                       |
| F-X     | Frequency - space domain                      |
| GPS     | Global Positioning System                     |
| LNA     | Linear Noise Attenuation                      |
| MLSS    | Multi-Level Stacked Sparker                   |
| MSL     | Mean Sea Level                                |
| NMO     | Normal Move Out                               |
| PoSTM   | Post-Stack Time Migration                     |
| QC      | Quality Control                               |
| SFT     | Secure File Transfer                          |
| SRME    | Surface Related Multiple Elimination          |
| TWTT    | Two-Way Travel Time                           |
| UTM     | Universal Transverse Mercator                 |
| WB_ZO   | Water Bottom Zero Offset Time                 |
| X-T     | Space – Time Domain                           |
| .CSV    | Comma Separated Values                        |



## 1. Introduction

Energinet Eltransmission A/S (Energinet) is developing a new offshore wind farm in the inner Danish Sea, Kattegat, the Hesselø Offshore Windfarm (HOWF). The project area is located between Denmark and Sweden approximately 30 km North of Sjælland.

The seismic processing report aims to detail the step by step processes used to get the best imaging of the seismic data. The techniques involved aim to reduce the noise in the datasets, improve signal to noise ratios, and improve upon the acquisition brute bandwidth of the data.

### 1.1 Scope of Work

Fugro acquired 3D Ultra Ultra High Resolution (3D-UUHR) seismic data at the Hesselø offshore wind farm, utilising the Fugro Pioneer. The data were QC'd offshore and processed onshore, using Fugro *Uniseis* software.

The aim of this survey was to acquire and provide high quality and high resolution data of the two 3D work locations. These were both 0.5 km x 1.5 km in size. The data from the survey will assist the client to determine the water depth, seabed sediment types, seabed features, and obstructions identifying any hazards larger than 1 m in the shallow section (seabed risk assessment). A minimum target depth of 60 m penetration below the seabed was a requirement.

In general data was of high quality. Lines were assessed onboard between the QC and client to determine if a client concession could be issued for lines that were technically out of spec.



Figure 1.1: Hesselø 3D-UUHR location overview





Figure 1.2: Hesselø 3D-UUHR line plan for offshore substation 1



Figure 1.3: Hesselø 3D-UUHR line plan for offshore substation 2



### 1.2 Acquisition Configuration

Table 1.1: 3D-UUHR Acquisition parameters

| Acquisition              |                                 |  |  |
|--------------------------|---------------------------------|--|--|
| Source                   |                                 |  |  |
| Туре                     | 2 x Multi Level Stacked Sparker |  |  |
| Power                    | 700 Joules / 360 Tips           |  |  |
| Shot Interval            | 0.5 m (1 m same sparker)        |  |  |
| Depth                    | 0.52, 0.67, 1.12 m              |  |  |
| Streamer                 |                                 |  |  |
| Model                    | GeoEel gel filled               |  |  |
| Groups per cable         | 48 @ 1 m                        |  |  |
| Cables / Separation      | 4 / 8 m                         |  |  |
| Depth                    | 1.4 m                           |  |  |
| Near Offset              | ~10 m                           |  |  |
| Recording System         |                                 |  |  |
| Model                    | Geode                           |  |  |
| Sample interval / Length | 0.125 ms / 155.875 ms           |  |  |
| Format                   | SEG-D                           |  |  |

Table 1.2: 3D-UUHR Processing Grid Parameters Offshore Substation 1

| Grid                               |                                              |         |             |              |  |  |
|------------------------------------|----------------------------------------------|---------|-------------|--------------|--|--|
| Corner Point 1                     | IL 210                                       | XL 1200 | X 673389.26 | Y 6266305.31 |  |  |
| Corner Point 2                     | IL 210                                       | XL 4600 | X 675064.96 | Y 6266018.93 |  |  |
| Corner Point 3                     | IL 760                                       | XL 1200 | X 673296.60 | Y 6265763.17 |  |  |
| Corner Point 4                     | IL 760                                       | XL 4600 | X 674972.31 | Y 6265476.79 |  |  |
| Datum / CM / Projection            | ETRS89 / 9° E / UTM Northern Hemisphere 32 N |         |             |              |  |  |
| Processing Bin Size Inline / Xline | 1 m / 0.5 m (Acquisition at 2 m / 0.5 m)     |         |             |              |  |  |

Table 1.3: 3D-UUHR Processing Grid Parameters Offshore Substation 2

| Grid                               |                                              |          |             |              |  |  |
|------------------------------------|----------------------------------------------|----------|-------------|--------------|--|--|
| Corner Point 1                     | IL 12130                                     | XL 6750  | X 674116.61 | Y 6254088.19 |  |  |
| Corner Point 2                     | IL 12130                                     | XL 10160 | X 675797.24 | Y 6253800.97 |  |  |
| Corner Point 3                     | IL 12680                                     | XL 6750  | X 674023.96 | Y 6253546.05 |  |  |
| Corner Point 4                     | IL 12680                                     | XL 10160 | X 675704.59 | Y 6253258.83 |  |  |
| Datum / CM / Projection            | ETRS89 / 9º E / UTM Northern Hemisphere 32 N |          |             |              |  |  |
| Processing Bin Size Inline / Xline | 1 m / 0.5 m (Acquisition at 2 m / 0.5 m)     |          |             |              |  |  |



# 2. Processing 3D-UUHR

### 2.1 3D-UUHR Processing Summary

The agreed processing flow was applied to all the lines as follows:

- Reformat from SEG-D
- Apply recording delay correction static: 0 ms
- Apply low-cut filter: 20Hz / 18 dB/Oct
- Apply T<sup>2</sup> spherical divergence
- Merge seismic with source & receiver navigation, update offsets, assign 2D & 3D geometry
- Pick zero offset seabed assign hyperbolic seabed time per channel
- Edit out bad shots / channels identified from offshore QC
- Shot domain swell noise attenuation
- Channel domain swell noise attenuation
- Receiver domain swell noise attenuation
- Temporary statics application (to aid QC statics reassessed after final velocities)
- Linear noise attenuation
- 2D SRME
- Deghosting
- Apply tidal static correction
- Preliminary 3D statics
- 3D Velocity analysis in Pegasus: 160 m picking grid
- Final 3D statics
- Regrid to processing grid
- 3D Fourier interpolation and regularisation
- Sort to 3D CMP domain
- NMO using picked velocity
- PASTA statics application
- Outer trace final mute
- Stack using 1/N trace normalisation 24 fold max
- Post stack Kirchhoff time migration
- Footprint removal
- Deconvolution shaping and denoise
- Zero phase filter application using data derived wavelet (positive seabed)
- Deconvolution remnant demultiple
- Surface wave noise attenuation
- Time variant bandpass filter
- FK filter, dBgain and denoise up to 100 Hz
- Apply source and receiver datum correction
- Cosmetic seabed mute
- NLMEAN timeslice image denoise
- Output to SEG-Y (trimmed to exclude low fold edges)

### 2.2 Reformatting and Navigation Merge

For each sequence, raw field data in SEG-D format was reformatted into *Uniseis* internal processing format. As part of the reformatting process a bulk shift is applied to the data to compensate for any delay in the recording system. The Geode recoding system has zero start of data delay, so the trace data kept the original acquired 155.875 ms record length at a sample rate of 0.125 ms. A de-bias low-cut filter of 20 Hz / 18 dB/Octave was applied to the data in order to remove low frequency noise and instrument DC bias prior to processing. A spherical divergence correction (time squared) was applied to the data to aid in QC and further processing.

A QC of the data was conducted on the vessel so that any missing shots, bad channels and noisy records that may have an adverse effect on data quality could be identified.

Geometry was assigned in order to give each trace a CMP number and source / receiver positions were merged into the seismic dataset in order to get accurate offsets and 3D locations for the data prior to velocity picking. Correct CMP locations enabled trends from nearby lines to be used in order to help with consistency and accuracy of velocity picks.

Finally, at this stage, near trace gathers were used to interactively pick a zero offset water bottom time (near trace seabed time with normal moveout applied) for use in later processing.



Figure 2.1: Reformat: raw shots





Figure 2.2: Reformat: low cut and geometrical spreading

### 2.3 Swell Noise Attenuation

Swell noise was effectively attenuated using the *Uniseis 'SWNA'* and *'TFDN'* tools. The *'TFDN'* algorithm makes use of the fact that, unlike an impulsive source such as a shot, the amplitude of the swell noise will not decay with time since it is being continuously generated during recording. The process decomposes the trace data into signal and noise components, downweighting or removing the noise to leave a clean trace.

An initial pass of de-swell (*TFDN*) was applied to frequencies up to 100 Hz in the shot domain. Dip attenuation (*SWNA*) was then applied to attenuate any non-physical dips up to 100Hz below 1000 m/s apparent velocity. This was followed by a second pass of *TFDN / SWNA* performed in the channel domain up to 100 Hz, and a third pass of *TFDN / SWNA* in the receiver domain up to 150 Hz.

Higher values than 150 Hz were tested, but these did not show any improvement in swell noise attenuation, as it is predominantly a lot lower frequency than this. The maximum value of 150 Hz was based on no improvement to the denoise routine, only an increase in CPU runtime if we went any larger.




Figure 2.3: Denoise: input shots



Figure 2.4: Denoise: output shots





Figure 2.5: Denoise: input stack



Figure 2.6: Denoise: output stack



#### 2.4 Preliminary Shot Statics

Due to the fine sampling rate, shot statics were a large factor in the resolution of the shallow section of the data. It was important at this stage, once data was relatively free of low frequency swell noise, to apply some preliminary shot statics to aid the QC of some of these further processes. It is particularly useful to have shot statics applied prior to deghosting as it is difficult with this resolution of data to identify what the process is doing if shot statics are still predominant.

To achieve this, a provisional shot statics computation was ran using the *Uniseis* module *'NEPTUNE'*. This is ran on NMO corrected CMPs, creating a pilot trace for each CMP using a weighted mix of local stacked traces. Cross-correlations of the pilot trace with the traces in its respective CMP gather are used to assess the static, and this is ran in multiple iterations. With each iteration, the static computed is applied and the pilot trace is correspondingly updated. This run focused solely on the shot static which is a short period effect that locally damages the stack. 5 iterations were chosen, as there was a slight uplift from 3 iterations. Any more than 5 iterations were where the static had already converged to the accepted value and would only unnecessarily increase the runtime.

Later in the processing, once the data is deghosted and velocities are picked, we rerun this computation in 3D (essential before interpolation) and add in a final component to correct for the streamer depth static using the module '*PASTA*'.





Figure 2.7: Preliminary shot statics: input stack



Figure 2.8: Preliminary shot statics: output stack



#### 2.5 Linear Noise Attenuation

Linear noise was observed on most lines in this survey. A Tau-P linear transform was applied to the data to effectively attenuate this noise. Data in the Tau-P domain with dip greater than 20 ms at maximum offset was muted from the full Tau-P transform. Values of ±15 ms transform range began to show hints of primary removal, and ±25 ms was less effective at linear noise attenuation.



Figure 2.9: LNA: input shots





Figure 2.10: LNA: output shots

#### 2.6 Surface Related Multiple Elimination (SRME)

There was significant multiple energy within the data, mainly associated with the water bottom. To attenuate multiple energy, SRME (Surface Related Multiple Elimination) was carried out. SRME uses the geometry of shot recording to estimate all possible multiples that can be generated by the surface. Before evaluating the multiple model, the recorded data was extrapolated to zero offset and a mute was applied to the input shot records to remove direct arrival and guided wave energy. The predicted multiple energy was removed from the input gathers with a double adaptive matching algorithm, the first done in the common channel domain and the second in the shot domain. The adaption in the common offset domain was computed over 211 neighbouring shots, with a filter length of 15 ms and an operator of 50 ms which was longer than the seabed reflection time. Less traces than 211 can cause the SRME to be too harsh (with a small SP interval of 0.5 m this is just over 100 m), and conversely a higher number of traces can often lead to a degraded model where there is steeply dipping and variable multiple. Before adaptive subtraction, the modelled multiples were muted above the first seafloor multiple. SRME was found to be effective in attenuating multiple energy whilst preserving primary events.





TRORIGI 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187





Figure 2.12: SRME: output shots





Figure 2.13: SRME: input stack



Figure 2.14: SRME: output stack



#### 2.7 Source and Receiver Deghosting

The high acoustic impedance contrast between the water column and the sea surface causes the latter to act as a near perfect reflector of acoustic energy. Consequently, some of the acoustic energy from a seismic source reflects at this interface before being recorded at the receivers and this is referred to as (source/receiver) ghost, thereby limiting the wavefield spectral band.

To attenuate source, receiver and combined source / receiver ghosts, the *Uniseis 'DEGHOST'* module was applied. '*DEGHOST'* attempts to separate the primary energy from the secondary ghosted wavefield. The primary upcoming wavefield should be more representative of the subsurface reflectivity required for interpretation & well-log matching. Reflections should become shorter, less complex wavelets and be more representative of their characteristic reflectivity in magnitude and polarity. The consequence of this is that we improve the resolution and achieve a broader spectrum. Various tests showed the standard reflection coefficient of -1 for the source and receiver deghosting worked well to attenuate the ghost. A 0.5 m wave height allowance for the frequency dependent scattering model was applied to the source deghosting and 0.2 m for receiver side. This helped to reduce ringing from the deghosting process.



7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181





Figure 2.16: Deghost: source & receiver deghost shots









Figure 2.18: Deghost: source & receiver deghost stack



#### 2.8 Velocity Analysis

A high-resolution velocity analysis using 2<sup>nd</sup> order NMO correction was conducted using the interactive velocity analysis software *Pegasus*. The analysis was performed at 160 m intervals in both inline and crossline directions with each location being compared to and constrained by neighbouring locations. This ensured that consistency was maintained between adjacent lines and velocity locations. Preliminary 3D shot statics were applied at this stage to improve the semblance and stacking. More detail on the 3D statics is available in "Tides and Final 3D Shot Statics". The example below shows the displays generated by *Pegasus* for the purposes of velocity analysis. This image shows the semblance, NMO corrected gather, multi velocity stacks, real time stack and the picking map.



Figure 2.19: Pegasus 3D velocity picking example on OS1



#### 2.9 Tides and Final 3D Shot Statics

Similar to Section 2.4 on preliminary shot statics, and to compensate for any remaining timing variations, residual shot statics are recomputed in a 3D domain. Observed tides were applied up front, followed by the computation and application of the residual shot static.

The process is very similar to the 2D application, but this time the cdps are 3D cdps of common inline and crossline, with varying offset. The only big difference is that a supergather is created for each 3D cdp that includes the traces from 5 inlines either side and 5 crosslines either side. This supergather then becomes the pilot trace and the same iterative cross correlative approach is then ran through 5 iterations.



Figure 2.20: 3D OS1 timeslice 60-85 ms: without final statics





Figure 2.21: 3D OS1 timeslice 60-85 ms: with final statics



12620319 22 23 245 124 345 175 466 484 407 47 531 538 538 538 538 549 409 171 171 72 245 347 277 308 138 509 399 408 469 415 25 552 552 45 43 140 547 170 175 755 20 249 271 301 122 502 309 420 444 545 55 55 560 568 669 667 721 378

Figure 2.22: 3D OS1 xline 2000-2002: without final statics





Figure 2.23: 3D OS1 xline 2000-2002: with final statics

#### 2.10 Interpolation and Regularisation

Regularising offset bins involves interpolating traces to bin centre. Empty bins are also interpolated using a 3D anti-leakage Fourier method. Regular offset bins allow the upcoming migration stage to work efficiently while ensuring migration artefacts are restricted to the outer edges of the volume.

*Uniseis* tool '*FRECON*' was used on each of the 24 offset planes, individually for each OS area. Here, the module works in 3D – selectively transforming data using an anti-leakage Fourier transform. This allows the module to effectively interpolate dipping reflectors while the transform also allows signal to be prioritised over noise.





Figure 2.24: 3D OS1 timeslice 60-85 ms: before regularisation



Figure 2.25: 3D OS1 timeslice 60-85 ms: after regularisation





Figure 2.26: 3D OS1 xline 2000-2002: before regularisation



INFORMED 22 253 244 314 455 375 466 467 477 538 555 566 619 659 660 711 74 777 216 427 277 061 138 369 369 460 461 551 552 512 613 644 614 714 715 756 210 248 271 301 132 352 353 451 454 544 544 554 555 566 656 647 750 378

Figure 2.27: 3D OS1 xline 2000-2002: after regularisation



## 2.11 PASTA Statics, Final Mute and Stack

'PASTA' was applied to NMO corrected CMPs to compensate for any residual receiver side statics. This is achieved in a similar manner, by cross correlating the traces in the 3D CMP with a pilot trace which is a weighted trace mix of the cube.

The data were then ready to be stacked. An outer trace mute was applied to remove NMO stretch on the far offsets. A more open mute would introduce stretch in the shallow regions, a consequence of the rather shallow conditions. Trace normalization of 1/N was used when stacking. See below for an example of the gathers with the final mute overlaid.



Figure 2.28: 3D OS1: CMP gathers with final stacking mute overlaid

| Time [ms] | Offset [m]             |
|-----------|------------------------|
| 20        | 25                     |
| 60        | 30                     |
| 120       | 65 (full offset range) |

Table 2.1: 3D-UUHR Final mute parameters



## 2.12 Post Stack Kirchhoff Migration (PoSTM)

As velocity control was good, 3D Post-Stack Kirchhoff Time Migration was performed using 100% of the picked velocity. A migration aperture of radius 60 m was used with a 30% stretch mute to minimise dipping artefacts. Anti-aliasing was applied by pre-filtering the data within the migration scan depending upon the local migration operator dip. Anti-aliasing protection prevents any undesirable data being included.



Figure 2.29: 3D OS1 xline 2000-2002: prior to PoSTM





Figure 2.30: 3D OS1 xline 2000-2002: PoSTM

## 2.13 Acquisition Footprint Filtering

Spatially periodic noise can be viewed on timeslices as regular amplitude modulations or striping. In marine seismic data this is usually related to the streamer/gun configuration where it is commonly known as an acquisition footprint. Stripes in the spatial domain appear as discrete spots of energy in the Kx-Ky domain. Filtering was performed on one transformed time-slice at a time with an example of timeslices below.





Figure 2.31: 3D OS1 zoomed timeslices: before KxKy footprint filtering



Figure 2.32: 3D OS1 zoomed timeslices: after KxKy footprint filtering



#### 2.14 Post Stack Processing 1

Post stack deconvolution-based shaping was applied to further enhance the resolution. This was averaged over the entire inline with a gap of 0.5 ms at the seabed, increasing linearly to 1.5 ms at a time of 90 ms.

The low frequency noise, mainly boosted by the deghosting process, was attenuated at this stage using the *Uniseis 'WAVDN'* module. This decomposed each seismic trace into separate filter panels, and only the lower frequencies panels were dampened.



Figure 2.33: 3D OS1 inline 300: before post stack processing 1



Figure 2.34: 3D OS1 inline 300: after post stack processing 1



#### 2.15 Zero Phase

A zero-phase filter was designed using a data derived source signature wavelet, itself obtained by super stacking central inlines of each cube independently. The water bottom was flattened, and traces shifted to 30 ms prior to the CMPs being super stacked. The onset of the super stacked wavelet was then shifted to 0 ms and the filter calculated. See below for an example of the zero-phase filter applied to the stack.



Figure 2.35: Zero phase: zoomed seabed before



Figure 2.36: Zero phase: zoomed seabed after



#### 2.16 Post Stack Processing 2

A post stack deconvolution followed this to remove further multiple, hitting the remnant second seabed bounce rather effectively. This was a very mild application with averaging of the deconvolution operator over a large 311 traces in both the inline and xline direction, computed with a gap 5 ms shorter than the seabed, and operator 5 ms longer than the seabed.

The final few processing steps were then to further filter the stack before being output as a final product. Various filters were tested with the aim of enhancing signal, preserving resolution and reducing noise. The following set of processes were arrived at:

- Decon remnant demultiple
- Surface wave noise attenuation up to 80 Hz
- Time varying bandpass filter ref. Table 2.2
- FK filter > 0.55 ms / trace in xline domain
- dB gain of 52 dB/sec from seabed
- SWELL up to 100 Hz
- Apply source / receiver static shift
- Mute above seabed with 1 ms taper
- NLMEAN timeslice image denoise
- Trim data output to take off lower fold edges

| Start Time | Low Cut [Hz] | Slope [dB Oct] | High Cut [Hz] | Slope [dB Oct] |
|------------|--------------|----------------|---------------|----------------|
| 40 ms      | 80           | 18             | 3300          | 32             |
| 95         | 60           | 18             | 2600          | 32             |
| 115        | 40           | 18             | 2100          | 32             |

#### Table 2.2: 3D-UUHR Time varying bandpass filter

Data deliverables were also requested in depth. This was done using the *Uniseis 'DTCONV'* tool. The RMS stacking velocities were converted to intervals with a DIX transformation prior to depth conversion. This was applied to both the final migrated time cube and the final non-migrated time cube.





Figure 2.37: 3D OS1 inline 300: final time cube



Figure 2.38: 3D OS1 inline 300: final non migrated time cube





Figure 2.39: 3D OS1 inline 300: final depth cube



Figure 2.40: 3D OS1 inline 300: final non migrated depth cube





Figure 2.41: 3D summary OS1 timeslice 60-85 ms: raw cube



Figure 2.42: 3D summary OS1 timeslice 60-85 ms: final migrated time cube





Figure 2.43: 3D summary OS2 timeslice 60-85 ms: raw cube



Figure 2.44: 3D summary OS2 timeslice 60-85 ms: final migrated time cube





Figure 2.45: Final spectrum for previous 2D acquisition



Figure 2.46: Final spectrum for 3D





Figure 2.47: 3D view OS1: final migrated time cube



Figure 2.48: 3D view OS2: final migrated time cube



#### 2.17 Output to SEG-Y

The final stacks were output in SEG-Y format with the bin centred positions. These files were electronically transferred internally to the geophysicists for interpretation via *Fugro Shares*. An example of the approved EBCDIC header is displayed below.

C01 CLIENT: ENERGINET ELTRANSMISSION A/S RECORDED BY: FUGRO C02 LINE: 0S1 PROJECT: HESSEL0 3D C03 AREA: HESSELO SITE SURVEY: WINDFARM UUHR C05 VESSEL: FUGRO PIONEER DATE: APR-2021 C06 FORMAT: SEGY C07 REC LENGTH: 155.875 MS SAMPLE RATE: 0.125 MS C08 FILTERS LOW CUT: N/A HIGH CUT: N/A C09 SOURCE: 2\*SPARKER SOURCE DEPTH: 0.52 M C10 LEVEL: 700J SP INTERVAL: 0.5 M C11 CABLE TYPE: 4\*TELEDYNE CABLE DEPTH: 1.4 M C12 NUM CHANNELS: 4\*48 GP INTERVAL: 1 M C13 NAVIGATION PRIMARY: STARFIX NG C14 PROCESSING BY: FUGRO C15 PROCESSING SYSTEM: UNISEIS C17 1)TRANSCRIPTION TO 155.875 MS AT 0.125 MS NO. CHANNELS: 48 C18 2)MERGE SRC/REC NAV 3)APPLY GEOMETRY 4)EDIT BAD TRACES C19 5)SHOT / CHANNEL / RECEIVER DOMAIN DENOISE 6)LNA C20 7)2D SRME 8)DEGHOSTING 9)PRELIM 3D STATICS C21 10)3D VELOCITY PICKS 11)FINAL 3D STATICS 12)REGRID 1M X 0.5M C22 13)3D FOURIER REG 14)SORT TO 3D CMPS 15)NMO C23 16)PASTA STATICS 17)MUTE 18)STACK 19)POST STACK MIGRATION C24 20)DECON SHAPING 21)ZERO PHASE 22)TVF 23)DB GAIN C25 24)FINAL ZERO SEA LEVEL STATIC 25)OUTPUT TO SEGY C27 IL (189-192); XL (193-196) C28 CDPX (181-184); CDPY (185-188) C30 1.0000 M INLINE SPACING INC. -1 || 0.5000 M CROSSLINE SPACING INC. 1 C31 210,1200,673389.26,6266305.31 C32 210,4600,675064.96,6266018.93 C33 760,1200,673296.60,6265763.17 C34 760,4600,674972.31,6265476.79 C36 OS NUMBER : 1 DATA: MIG TIME CUBE C37 ILINE RANGE : 210-760 C38 XLINE RANGE : 1200-4600 C40 INCREASE IN ACOUSTIC IMPEDANCE = POSITIVE NUMBER

Figure 2.49: Final migrated time stack OS1 EBCDIC example



# **Appendix A**

Line Listings



# A.1 3D-UUHR Lines

Table A.1: 3D-UUHR Accepted lines processed

| Line Name   | Sequence | First SP | Last SP | Length [km] |
|-------------|----------|----------|---------|-------------|
| OS1D4561P01 | 1        | 10004    | 13800   | 1.90        |
| OS1D4547P01 | 2        | 13796    | 10002   | 1.90        |
| OS1D4267P01 | 3        | 10006    | 13799   | 1.90        |
| OS1D4547R01 | 4        | 13976    | 10003   | 1.99        |
| OS1D4253P01 | 5        | 10006    | 13799   | 1.90        |
| OS1D4505P01 | 6        | 13792    | 10003   | 1.89        |
| OS1D4495P01 | 7        | 10006    | 13799   | 1.90        |
| OS1D4485P01 | 9        | 13795    | 10003   | 1.90        |
| OS1D4223P01 | 14       | 10004    | 13800   | 1.90        |
| OS1D4455P01 | 15       | 13797    | 10002   | 1.90        |
| OS1D4213P01 | 16       | 10004    | 13800   | 1.90        |
| OS1D4435P01 | 17       | 13798    | 10002   | 1.90        |
| OS1D4193P01 | 18       | 10003    | 13800   | 1.90        |
| OS1D4415P01 | 19       | 13797    | 10002   | 1.90        |
| OS1D4209P01 | 20       | 10002    | 13800   | 1.90        |
| OS1D4449P01 | 21       | 13799    | 10003   | 1.90        |
| OS1D4183P01 | 22       | 10004    | 13799   | 1.90        |
| OS1D4425P01 | 23       | 13793    | 10004   | 1.89        |
| OS1D4173P01 | 24       | 10004    | 13799   | 1.90        |
| OS1D4405P01 | 25       | 13606    | 10003   | 1.80        |
| OS1D4163P01 | 26       | 10006    | 13799   | 1.90        |
| OS1D4393P01 | 27       | 13796    | 10002   | 1.90        |
| OS1D4153P01 | 28       | 10006    | 13799   | 1.90        |
| OS1D4383P01 | 29       | 13796    | 10003   | 1.90        |
| OS1D4145P01 | 30       | 10006    | 13799   | 1.90        |
| OS1D4374P01 | 31       | 13796    | 10003   | 1.90        |
| OS1D4137P01 | 32       | 10006    | 13799   | 1.90        |
| OS1D4360P01 | 33       | 13796    | 10003   | 1.90        |
| OS1D4127P01 | 34       | 10006    | 13799   | 1.90        |
| OS1D4350P01 | 35       | 13796    | 10003   | 1.90        |
| OS1D4117P01 | 36       | 10006    | 13799   | 1.90        |
| OS1D4340P01 | 37       | 13795    | 10003   | 1.90        |
| OS1D4107P01 | 38       | 10006    | 13799   | 1.90        |
| OS1D4330P01 | 39       | 13795    | 10003   | 1.90        |
| OS1D4097P01 | 40       | 10006    | 13799   | 1.90        |
| OS1D4320P01 | 41       | 13795    | 10003   | 1.90        |
| OS1D4087P01 | 42       | 10006    | 13799   | 1.90        |
| OS1D4310P01 | 43       | 13795    | 10004   | 1.90        |
| OS1D4077P01 | 44       | 10006    | 13799   | 1.90        |
| OS1D4300P01 | 45       | 13795    | 10003   | 1.90        |
| OS1D4067P01 | 46       | 10006    | 13798   | 1.90        |
| OS1D4287P01 | 47       | 13795    | 10003   | 1.90        |



| Line Name   | Sequence | First SP | Last SP | Length [km] |
|-------------|----------|----------|---------|-------------|
| OS1D4057P01 | 48       | 10006    | 13798   | 1.90        |
| OS1D4279P01 | 49       | 13652    | 10003   | 1.82        |
| OS1D4047P01 | 50       | 10006    | 13798   | 1.90        |
| OS1D4515P01 | 51       | 13795    | 10003   | 1.90        |
| OS1D4037P01 | 52       | 10006    | 13798   | 1.90        |
| OS1D4525P01 | 53       | 13795    | 10003   | 1.90        |
| OS1D4025P01 | 54       | 10006    | 13799   | 1.90        |
| OS2D4385P01 | 56       | 13795    | 10003   | 1.90        |
| OS2D4105P01 | 57       | 10006    | 13798   | 1.90        |
| OS2D4395P01 | 58       | 13795    | 10003   | 1.90        |
| OS2D4115P01 | 59       | 10010    | 13798   | 1.89        |
| OS2D4405P01 | 60       | 13795    | 10003   | 1.90        |
| OS2D4125P01 | 61       | 10006    | 13798   | 1.90        |
| OS2D4415P01 | 62       | 13796    | 10003   | 1.90        |
| OS2D4135P01 | 63       | 10006    | 13799   | 1.90        |
| OS2D4425P01 | 64       | 13796    | 10003   | 1.90        |
| OS2D4145P01 | 65       | 10006    | 13799   | 1.90        |
| OS2D4435P01 | 66       | 13796    | 10003   | 1.90        |
| OS2D4165P01 | 67       | 10006    | 13799   | 1.90        |
| OS2D4455P01 | 68       | 13793    | 10003   | 1.90        |
| OS2D4185P01 | 69       | 10006    | 13799   | 1.90        |
| OS2D4475P01 | 70       | 13796    | 10003   | 1.90        |
| OS2D4205P01 | 71       | 10006    | 13798   | 1.90        |
| OS2D4495P01 | 72       | 13795    | 10003   | 1.90        |
| OS2D4225P01 | 73       | 10006    | 13798   | 1.90        |
| OS2D4515P01 | 74       | 13795    | 10003   | 1.90        |
| OS2D4245P01 | 75       | 10006    | 13798   | 1.90        |
| OS2D4535P01 | 76       | 13795    | 10003   | 1.90        |
| OS2D4265P01 | 77       | 10006    | 13798   | 1.90        |
| OS2D4555P01 | 78       | 13796    | 10004   | 1.90        |
| OS2D4285P01 | 79       | 10006    | 13799   | 1.90        |
| OS2D4575P01 | 80       | 13796    | 10003   | 1.90        |
| OS2D4305P01 | 81       | 10006    | 13799   | 1.90        |
| OS2D4595P01 | 82       | 13796    | 10005   | 1.90        |
| OS2D4325P01 | 83       | 10006    | 13799   | 1.90        |
| OS2D4615P01 | 84       | 13796    | 10003   | 1.90        |
| OS2D4345P01 | 85       | 10006    | 13798   | 1.90        |
| OS2D4635P01 | 86       | 13795    | 10003   | 1.90        |
| OS2D4365P01 | 87       | 10006    | 13798   | 1.90        |
| OS2D4655P01 | 88       | 13400    | 10003   | 1.70        |
| OS2D4645P01 | 89       | 13795    | 10003   | 1.90        |
| OS2D4375P01 | 90       | 10006    | 13798   | 1.90        |
| OS2D4625P01 | 91       | 13795    | 10003   | 1.90        |
| OS2D4355P01 | 92       | 10006    | 13798   | 1.90        |



| Line Name   | Sequence | First SP | Last SP | Length [km] |
|-------------|----------|----------|---------|-------------|
| OS2D4605P01 | 93       | 13796    | 10003   | 1.90        |
| OS2D4335P01 | 94       | 10006    | 13799   | 1.90        |
| OS2D4585P01 | 95       | 13796    | 10003   | 1.90        |
| OS2D4315P01 | 96       | 10006    | 13799   | 1.90        |
| OS2D4295P01 | 98       | 10006    | 13799   | 1.90        |
| OS2D4528P01 | 99       | 13795    | 10003   | 1.90        |
| OS2D4274P01 | 100      | 10006    | 13799   | 1.90        |
| OS2D4519P01 | 101      | 13795    | 10003   | 1.90        |
| OS2D4255P01 | 102      | 10006    | 13798   | 1.90        |
| OS2D4509P01 | 103      | 13796    | 10003   | 1.90        |
| OS2D4237P01 | 104      | 10006    | 13799   | 1.90        |
| OS2D4463P01 | 105      | 13795    | 10003   | 1.90        |
| OS2D4215P01 | 106      | 10004    | 13798   | 1.90        |
| OS2D4445P01 | 107      | 13796    | 10003   | 1.90        |
| OS1D4008R01 | 108      | 10006    | 13799   | 1.90        |
| OS1D4233R01 | 109      | 13796    | 10003   | 1.90        |
| OS1D4021J01 | 110      | 10006    | 13799   | 1.90        |
| OS1D4247J01 | 111      | 13796    | 10003   | 1.90        |
| OS1D4057J01 | 112      | 10006    | 13807   | 1.90        |
| OS1D4355P01 | 113      | 13795    | 10003   | 1.90        |
| OS1D4111J01 | 114      | 10006    | 13798   | 1.90        |
| OS1D4379J01 | 115      | 13795    | 10003   | 1.90        |
| OS1D4147J01 | 116      | 10006    | 13798   | 1.90        |
| OS1D4471J01 | 117      | 13795    | 10003   | 1.90        |
| OS1D4167J01 | 118      | 10006    | 13798   | 1.90        |
| OS1D4491J02 | 119      | 13795    | 10003   | 1.90        |
| OS1D4189J01 | 120      | 10006    | 13799   | 1.90        |
| OS1D4537J01 | 121      | 13796    | 10003   | 1.90        |
| OS1D4205J01 | 122      | 10006    | 13798   | 1.90        |
| OS1D4555J01 | 123      | 13754    | 10003   | 1.88        |
| OS1D4219J01 | 124      | 10006    | 13799   | 1.90        |
| OS1D4459J01 | 125      | 13789    | 10003   | 1.89        |
| OS1D4476J01 | 126      | 13796    | 10003   | 1.90        |
| OS1D4105J01 | 127      | 10007    | 12807   | 1.40        |
| OS1D4467J01 | 128      | 13683    | 10343   | 1.67        |
| OS1D4141J01 | 129      | 10006    | 13799   | 1.90        |
| OS1D4392J01 | 130      | 13795    | 10073   | 1.86        |
| OS1D4200J01 | 131      | 10162    | 11218   | 0.53        |
| OS1D4235J01 | 132      | 11957    | 10003   | 0.98        |
| OS1D4405J01 | 133      | 10091    | 11498   | 0.70        |
| OS1D4255J01 | 135      | 13795    | 10003   | 1.90        |
| OS1D4451J01 | 136      | 10007    | 13799   | 1.90        |
| OS1D4161J01 | 137      | 13796    | 11890   | 0.95        |
| OS1D4427J01 | 139      | 10006    | 12976   | 1.49        |





| Line Name   | Sequence | First SP | Last SP | Length [km] |
|-------------|----------|----------|---------|-------------|
| OS1D4261J01 | 140      | 13796    | 10003   | 1.90        |
| OS1D4497J01 | 141      | 10006    | 13799   | 1.90        |
| OS1D4161J02 | 142      | 13796    | 12385   | 0.71        |
| OS2D4135J01 | 143      | 10006    | 11074   | 0.53        |
| OS2D4474J01 | 144      | 13795    | 10003   | 1.90        |
| OS2D4155R01 | 145      | 10006    | 13799   | 1.90        |
| OS2D4485R01 | 146      | 13795    | 10003   | 1.90        |
| OS2D4174R01 | 147      | 10006    | 13798   | 1.90        |
| OS2D4495J01 | 148      | 13795    | 10003   | 1.90        |
| OS2D4195R01 | 149      | 10006    | 13799   | 1.90        |
| OS2D4540J01 | 150      | 13796    | 10003   | 1.90        |
| OS2D4226J01 | 151      | 10006    | 13799   | 1.90        |
| OS2D4565R01 | 152      | 13796    | 10003   | 1.90        |
| OS2D4371J01 | 153      | 10126    | 13076   | 1.48        |
| OS2D4570R01 | 154      | 13795    | 10003   | 1.90        |
| OS2D4196J01 | 155      | 10006    | 12685   | 1.34        |
| OS2D4615J01 | 156      | 13796    | 10003   | 1.90        |
| OS2D4286J01 | 157      | 10006    | 11608   | 0.80        |
| OS2D4444J01 | 158      | 10344    | 11312   | 0.48        |
| OS2D4549J01 | 159      | 13795    | 10003   | 1.90        |
| OS2D4143J01 | 160      | 10006    | 13261   | 1.63        |
| OS2D4414P01 | 161      | 13796    | 12829   | 0.48        |
| OS2D4346J01 | 162      | 13796    | 11066   | 1.37        |
| OS2D4264J01 | 163      | 10006    | 11632   | 0.81        |
|             |          |          | Total   | 276.82 km   |
## **Appendix B**

Deliverables



## B.1 3D-UUHR Deliverables

- Offshore
  - Seg-Y : Raw navigation merged shot gathers
  - PDF : End of line QC
- Onshore
  - Seg-Y : Migrated time cubes
  - Seg-Y : Migrated time cubes converted to depth
  - Seg-Y : Non-Migrated time cubes
  - Seg-Y : Non-Migrated time cubes converted to depth
  - Seg-Y : 3D picked 160m RMS velocities



## **Appendix D**

**Digital Deliverables** 



| Deliverable Type  | Sensor | Deliverable ID | Deliverable Content                  | Format            |
|-------------------|--------|----------------|--------------------------------------|-------------------|
| Final Deliverable | ALL    | FD_001         | Electronic database of deliverables  | XLSX              |
| Final Deliverable | 3DUHR  | FD_002         | TSG_Geodatabase                      |                   |
| Final Deliverable | 3DUHR  | FD_003         | Raw Data                             | SEGY              |
| Final Deliverable | 3DUHR  | FD_004         | EOL QC Reports                       | PDF               |
| Final Deliverable | 3DUHR  | FD_005         | QC Logsheets                         | XLSX              |
| Final Deliverable | 3DUHR  | FD_006         | Final non-migrated cube MSL TWT      | SEGY              |
| Final Deliverable | 3DUHR  | FD_007         | Final non-migrated cube MSL DEPTH    | SEGY              |
| Final Deliverable | 3DUHR  | FD_008         | Final migrated cube MSL TWT          | SEGY              |
| Final Deliverable | 3DUHR  | FD_009         | Final migrated cube MSL DEPTH        | SEGY              |
| Final Deliverable | 3DUHR  | FD_010         | Velocity Model                       | SEGY              |
| Final Deliverable | 3DUHR  | FD_011         | IHS Kingdom Project                  | Updated from WP A |
| Final Deliverable | 3DUHR  | FD_012         | Digitised Horizons                   | CSV               |
| Final Deliverable | 3DUHR  | FD_013         | Elevation Grids                      | XYZ               |
| Final Deliverable | 3DUHR  | FD_014         | UHR Depth below Seafloor (BSF) Grids | XYZ               |
| Final Deliverable | 3DUHR  | FD_015         | Isochore (layer thickness) Grids     | XYZ               |

