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Nomenclature 

 

Variable  Abbrev.  Unit  

Atmosphere   

Wind speed @ 10 m height WS10 m/s 

Wind direction @ 10 m height WD10 °N (clockwise from) 

Air pressure @ mean sea level PMSL  hPa  

Air temperature @ 2 m height Tair,2m °C 

Relative humidity @ 2 m height RH2m - 

Downward solar radiation flux SR W/m2 

Visibility VIZ km 

Ocean   

Water level WL  mMSL  

Current speed  CS m/s  

Current direction CD °N (clockwise to)  

Water temperature Twater °C 

Water Salinity Salinity - 

Water density ρwater Kg/m3 

Waves   

Significant wave height Hm0 m 

Peak wave period Tp s 

Mean wave period T01 s 

Zero-crossing wave period  T02 s 

Peak wave direction PWD °N (clockwise from) 

Mean wave direction MWD °N (clockwise from) 

Direction standard deviation  DSD ° 
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Executive Summary 

Energinet Eltransmission A/S (Energinet) requested a metocean site 

conditions assessment to form part of the site conditions and to serve as 

the basis for the design of the Energy Island North Sea (EINS).  

This study provides detailed metocean conditions for EINS and establishes a 

metocean database for the energy island and the related offshore wind farm 

(OWF) area development area around the island as shown in Figure 0.1. 

Table 0.1 provides a summary of metocean guidelines, EVA methodology, and 

analyses of Part B (island area, this report), and Part C (OWF area). 

 

Figure 0.1 Location of the Energy Island North Sea, the related offshore 

wind farm development area, and measurement stations 

The hindcast database (light blue polygon) entails: Waves: EINS-

SW-CFSR, Ocean: EINS-SW-CFSR, Atmosphere: Global-AT-CFSR. 

 

Table 0.1 Summary of metocean guidelines, EVA methodology, and 

analyses 

Analyses concern normal and extreme conditions included at each 

analysis point. The Part A report, [1], forms the data basis for Part B 

(Island) and Part C (OWF) analysis reports.  

Subject Part B (Island) 
Points: EINS-1-5 

Part C (OWF) 
Points: OWF-1-8 

Extremes - methodology J-EVA (directional) T-EVA (omni only) 

Analyses - Wind  ÷ 

Analyses - Water Level   

Analyses - Current   

Analyses - Waves   

Wind-Wave misalignment   

Other Metocean Conditions   
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Summary of data basis, Part A, [1] 

All metocean hindcast model data covered the period 1979-01-01 to  

2022-10-01 (43+ years) at 30-min interval. Wind and other atmospheric data 

were adopted from CFSR (rainfall data from ERA5), while a local hindcast 2D 

hydrodynamic model, HDEINS, was set up to simulate water levels and currents, 

and a dedicated spectral wave model SWEINS, was set up to simulate waves. 

3D currents, water temperature and salinity were adopted from the DHI United 

Kingdom and North Sea 3-dimensional (HDUKNS3D) hydrodynamic model. 

The hindcast data was compared to a comprehensive set of local wind, water 

level, current, wave and CTD (sea temperature and salinity) measurements 

(2021-11-15 to 2022-11-15.) supplemented by long-term measurements from 

other stations in the North Sea and found to be accurate and applicable for 

assessments of normal and extreme metocean conditions at EINS.  

Recommendations for wind profiles/averaging, current profiles, and short-term 

wave distributions were established based on the local measurements. 

Sea level rise (SLR) was estimated at +0.8 m by the year 2113 (end of 

lifetime). It is recommended that designers consult Energinet for any given 

design requirements, to decide on the safety policy and procedure with respect 

to relevant climate change effects. A (potentially conservative) guideline on 

climate change effects on wind and waves is suggested in NORSOK, [2]. 

The metocean hindcast data developed for EINS covers the entire light blue 

polygon in Figure 0.1. It entails all hindcast wave, ocean, and atmospheric 

variables and was provided to Energinet on a hard disk in MIKE dfs file 

formats. The dfs files can be read using either the Python MikeIO1 or the DHI-

MATLAB-Toolbox2 open source libraries available at GitHub. 

 

Normal conditions 

At EINS the mean wind speed is 8.8 m/ s and mean significant wave height is 

1.9 m (see Figure 0.3) with peak wave periods most frequently between 4 – 8 

s. The wave conditions are characterized by a mix of swell from the North 

Atlantic and local wind-sea predominantly from the west, with a dominance of 

extremes from the northwest, see Figure 0.2.  

The tides are weak with HAT = +0.38 mMSL and LAT = -0.33 mMSL, giving a 

total tidal envelope of 0.71 m. The highest and lowest total water levels in the 

hindcast period is +1.7 mMSL and -1.2 mMSL and occur during winter (Nov. – 

Feb.). The mean total current speed is 0.17±0.03 m/s dominated by residual 

(especially during extreme events). 

 

 
1 https://github.com/DHI/mikeio  
2 https://github.com/DHI/DHI-MATLAB-Toolbox  

https://github.com/DHI/mikeio
https://github.com/DHI/DHI-MATLAB-Toolbox
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Figure 0.2 Wave rose at EINS-2 

 

 

Figure 0.3 Spatial variation of Hm0 across EINS 
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Extreme conditions 

Extreme metocean conditions were established using DHI’s state-of-the-art 

Joint Extreme Value Analysis (J-EVA) analysis toolbox. Extreme values were 

established for return periods up to 10,000 years for wind, waves (significant 

wave height, maximum individual wave height based on Glukhovskiy, and 

maximum crest height based on Forristall), water levels, and currents. Joint 

probability of metocean conditions is also provided.  

The annual, omni-directional extreme value estimates at the analysis point 

EINS-2 are presented in Table 0.2. Variation of extreme CStot and Hm0 is also 

calculated across the EINS site. The maximum variation of CStot is about 0.3 

m/s for a 100-year return period (see Figure 5.15), and that of Hm0 is about 2 m 

for a 50- and 100-year return period (see Figure 6.23 and Figure 6.24). The 

directional extreme values are scaled according to DNV-RP-C205, [3].  

Comparisons between measured and modelled relation between Hmax and 

THmax demonstrated a very good agreement, and assessment of several 

common wave limitation approaches suggests that the extreme sea states are 

prone to steepness- or depth-induced wave breaking at EINS. In conclusion, 

we used the DNV steepness criteria with an upper bound of THmax to limit Hmax, 

and a ratio of 0.85 between the Cmax and Hmax to limit Cmax accordingly. 

 

Table 0.2 Summary of omni marginal extreme values at EINS-2 (d = 29.1 mMSL) 

Conditioned (joint) variables are given in Section 6.2.3. 

Variable 
Extreme value (omni) - Return Period [Year] 

1 5 10 50 80 100 103 104 

Extreme Wind Speed, WS [m/s], 10m, 10 min 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

High Water level, Total, HWLtot [mMSL] 1.2 1.4 1.5 1.7 1.7 1.8 2.1 2.4 

Low Water level, Total, LWLtot [mMSL] -0.8 -1.0 -1.0 -1.1 -1.2 -1.2 -1.4 -1.6 

High Water level, Residual, HWLres [m] 1.0 1.3 1.4 1.6 1.7 1.7 2.0 2.3 

Low Water level, Residual, LWLres [m] -0.7 -0.9 -0.9 -1.1 -1.1 -1.1 -1.3 -1.6 

Current Speed, Total, Surface, CSsurface m/s] 1.0 1.2 1.3 1.5 1.5 1.5 1.8 2.1 

Current Speed, Total, Depth-averaged, CStot [m/s] 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

Current Speed, Total, Near-seabed, CSnear-seabed [m/s] 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

Significant wave height, 3hr, Hm0 [m] 8.1 9.7 10.3 11.6 12.0 12.1 13.5 14.6 

Peak wave period, assoc. with Hm0, Tp|Hm0 [s] 13.2 14.7 15.3 16.4 16.7 16.8 17.9 18.7 

Mean zero-crossing period, assoc. with Hm0, T02|Hm0 [s] 8.9 9.8 10.1 10.7 10.9 10.9 11.6 12.0 

Maximum wave height, Hmax [m] 14.7 17.2 18.2 20.3 20.8 21.1 23.3 23.4 

Wave period assoc. with Hmax, THmax [s]  11.4 12.5 13.0 13.8 14.1 14.2 15.1 15.1 

Maximum crest level with respect to SWL, Cmax,SWL 9.7 12.1 13.1 15.3 16.0 16.3 19.2 19.9 

Maximum crest level with respect to MSL, Cmax,MSL 10.3 12.9 13.9 16.3 17.0 17.3 20.3 20.4 
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1 Introduction 

This study provides detailed metocean conditions for the Energy Island 

North Sea (EINS) and establishes a metocean database for the island and 

the adjacent offshore wind farm (OWF) development area (see Figure 1.1). 

Energinet Eltransmission A/S (Energinet) was instructed by the Danish Energy 

Agency (DEA) to initiate site investigations, including a metocean conditions 

assessment, to form part of the site conditions assessment and to serve as the 

basis for the design and construction of EINS and related OWF’s. The study 

includes an assessment of climate change considering an 80-year lifetime. 

Energinet commissioned DHI A/S (DHI) to provide this study with Scope of 

Work (SoW) defined in [4]. Later, the work was extended to cover also FEED 

level metocean conditions for the offshore wind farm area cf. scope in [5]. The 

study refers to the following common practices and guidelines: 

• DNV-RP-C205, [3]  

• IEC 61400-3-1, [6]  

 

Figure 1.1 The location of the Energy Island North Sea (red dot), and 

related offshore wind farm development area (dark blue) 

The hindcast database (light blue polygon) entails: Waves: EINS-

SW-CFSR, Ocean: EINS-SW-CFSR, Atmosphere: Global-AT-CFSR. 

The deliverables included time series data of hindcast metocean parameters, 

normal, extreme, and joint analyses at five (5) and eight (8) locations within the 

EINS and OWF areas respectively, a metocean database (see Figure 1.1), and 

four (4) separate reports: 

• Part A: Data Basis – Measurements and Models, [1] 

Establishment of bathymetry, measurements and hindcast metocean data. 

• Part B: Data Analyses – Energy Island, [7] (this report) 

Metocean site conditions for detailed design of the energy island. 

• Part C: Data Analyses – Wind Farm Area, [8]  

FEED level metocean site conditions for the offshore wind farm area. 

• Part D: Data Basis – Hindcast Revalidation Note, [9] 

Revalidation of the hindcast metocean data vs. extended measurements. 
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2 Analysis Points 

This section presents the EINS points selected for analysis. 

Figure 2.1 shows a map of the five (5) analysis points within the EINS area, 

and Table 2.1 presents the coordinates and water depths of the points. The 

EINS-1, EINS-2, and EINS-3 analysis points are the locations of lowest water 

depth, maximum Hm0 and maximum total current speed, respectively. EINS-4 

and EINS-5 represent the western and southern regions of EINS. Results at 

EINS-2 are presented in the body of this report, while results at all locations are 

given in the data reports (listed in Table 11.1) which are attached to this report.  

 

Figure 2.1 Map of the Energy Island North Sea (EINS) analysis points 

Table 2.1 Coordinates and water depths of the EINS analysis points 

# 
Point 
Name  
(A-z) 

Description 
Longitude  
WGS84  
[°E] 

Latitude  
WGS84   
[°N] 

Depth, 
Survey 
[mMSL] 

Depth, 
HDEINS 
[mMSL] 

Depth, 
SWEINS 
[mMSL] 

1 EINS-1 Shallowest 6.5714 56.5016 26.3 27.0 26.6 

2 EINS-2 Max Hm0 6.5944 56.4894 28.9 29.1 29.1 

3 EINS-3 Max CStot  6.5383 56.5172 28.8 28.9 28.9 

4 EINS-4 West 6.5094 56.4962 30.1 30.2 30.1 

5 EINS-5 South 6.5533 56.4638 29.8 29.8 29.8 
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3 Wind 

This section presents a summary of the wind data basis established in 

[1], followed by a presentation of normal and extreme wind conditions. 

The wind data was adopted from [2] and consisted of CFSR data during the 

period 1979 – 2022 (43.75 years). For convenience, we interpolated the CFSR 

data from its native resolution (~23 km and 1 hour) to the mesh and output time 

step of the wave model of this study (~400 m and 1800 s). The wind dataset is 

denoted EINS-AT-CFSR. Table 3.1 summarises the metadata of the EINS-AT-

CFSR dataset. 

Table 3.1 Metadata of the EINS-AT-CFSR dataset 

Time series data was provided to Energinet (.csv, .mat, .nc, .dfs0). 

Name Value 

Dataset ID: EINS-AT-CFSR 

Start Date [UTC]: 1979-01-01 01:00:00 

End Date [UTC]: 2022-09-30 23:30:00 

Time Step [s]: 1800 (interpolated from 3600 s) 

Cell Size [m]: ~400 (interpolated from ~23 km) 

 

The CFRS wind is considered representative of a 2-hour averaging period, see 

[2], at 10 m height. Methods of converting to other temporal averages and 

heights are assessed for normal and extreme conditions respectively.  

The wind analyses are presented in speed bins of 1.0 m/s and directional bins 

of 22.5° at 10 (and 30) m height. The direction is from where the wind is 

coming from. Table 3.2 presents the variables of the EINS-AT-CFSR dataset, 

including the bin sizes applied in figures and tables.  

Table 3.2 Wind variables of the EINS-AT-CFSR dataset 

The wind direction is from where the wind is blowing. 

Variable name Abbrev.  Unit  Bin size 

Wind speed at 10 m height WS10 m/s 1.0 

Wind direction at 10 m height WD10 °N-from 22.5 

 

The wind analyses cover the data period 1979-09-01 – 2022-08-31 (43 years), 

a round number of years, which is preferrable for extreme value analyses. The 

normal conditions apply a 30-min interval (as the hindcast models), while the 

extreme conditions (J-EVA) apply a 1-hour interval (as native in CFSR).  

The main body of this report presents results at EINS-2 (the location of max 

Hm0), while results at all analysis points are given in the data reports (listed in 

Table 11.1) which are attached to this report. The data reports contain all 

(scatter) tables and figures presented below. 
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3.1 Normal wind conditions 

The normal wind conditions are presented in terms of: 

• Normal wind profile  

• Time series 

• Wind rose 

• Histogram (Weibull parameters) 

• Monthly statistics 

• Directional statistics 

3.1.1 Normal wind profile 

Wind profiles are assessed in Section 3.2.1 in Part A, [1]. It is recommended to 

apply a power profile with α = 0.08 to convert normal (average) wind speeds 

from 10 to 30 m height (this corresponds to a factor of 1.09).  

 

3.1.2 Time series 

Figure 3.1 shows a time series of wind speed at EINS-2 during the considered 

43-year period. The mean is 8.8 m/s, and the maximum is 32.3 m/s (6th Nov. 

1985).  

 

Figure 3.1 Time series of wind speed at EINS-2 

 

3.1.3 Wind rose 

Figure 3.2 shows a wind rose at EINS-2. As typical for the North Sea, wind 

occurs from all directions, but with a predominance from west, and least 

frequently from northeast.  
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Figure 3.2 Wind rose at EINS-2; WS10 vs WD10 

 

3.1.4 Histogram (Weibull parameters) 

Figure 3.3 shows a histogram of wind speed at EINS-2. The figure shows a 

mean value (m) of 8.79 m/s and omni Weibull parameters of A = 9.91 and k = 

2.35. Weibull parameters for all directions are given in the data reports. 

 

Figure 3.3 Histogram of wind speed (w. Weibull parameters) at EINS-2  
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3.1.5 Monthly statistics 

Figure 3.4 shows monthly statistics of wind speed at EINS-2. The mean varies 

from 7 m/s during summer to 11 m/s during winter. The strongest wind speeds 

occurred during the months of Nov., Dec., and Jan.  

 

Figure 3.4 Monthly statistics of wind speed at EINS-2  

3.1.6 Directional statistics 

Figure 3.5 shows directional statistics of wind speed at EINS-2. The mean is 

strongest from the northwest at almost 10 m/s, and weakest from northeast at 

about 7 m/s. The strongest winds occur from the (north-)western sector.   

 

Figure 3.5 Directional statistics of wind speed at EINS-2  
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3.2 Extreme wind conditions 

The extreme wind conditions are estimated following the steps outlined in 

Appendix D: J-EVA Summary. The storm events selected for the J-EVA 

analyses are described in Section 6.2 and shown in Figure 6.19. A J-EVA 

statistical model (see Section 14.3) has been set up, followed by simulation 

including directional scaling (see Section 14.4 in Appendix D: J-EVA Summary) 

to estimate the extremes of the 10 m wind speed.  

 

3.2.1 Extreme wind profile (height conversion) 

Wind profiles are assessed in Section 3.2.1 in Part A, [1]. It is recommended to 

apply a power profile with α = 0.10 to convert extreme wind speeds from 10 to 

30 m height (this corresponds to a factor of 1.12).  

 

3.2.2 Wind averaging (temporal conversion) 

Wind averaging was assessed in Section 3.2.2 in Part A, [1]. It is 

recommended to adopt the IEC factors for converting between averaging times 

of extreme wind speeds within the range of 2 hours (CFSR) and 10-min, i.e., a 

factor of 1.08 to convert from 2-h to 10-min average duration of extreme wind 

speeds. A more cautious/conservative approach may be to adopt the Frøya 

profile for temporal conversion of extreme wind speeds.  

 

3.2.3 Extreme wind speed 

Figure 3.6 shows directional annual number of exceedances of the 10 m wind 

speed from the 80,000-year simulation, which is used to calculate the best 

estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return period extremes. Best 

estimates for larger return periods are calculated based on simulating up to 4 x 

106 years of events, where the minimum number of exceedances Ne = 50 is 

chosen for the 80,000-year return period.  

80.000 years is not provided as return period values, but the J-EVA simulations 

are run up to 80.000 years to support the directional scaling that needs 

directional values of 8 times the considered return periods (see Section 14.4.1 

and 14.4.2). The extreme values are presented (Table 3.3 and Table 3.4) for a 

maximum return period of 10,000 years.  

The model fits the omni-directional data very well. There is hardly any variation 

in the quality of the fit to the directional values, which is very good for all 

directions. From a J-EVA point of view, it is also important that all data points 

representing storm events are within the light blue shaded area since this 

means that they have been resampled in the simulation. 

Table 3.3 and Table 3.4 provide the values of the directional extreme wind 

speeds at 10 m and 30 m height. The values are representative of 10-min 

average wind speed. Extreme wind speeds of a 2-hour averaging period are 

presented in the Excel tables (listed in Table 11.1) which are attached to this 

report. The directional extreme values are scaled according to DNV-RP-C205, 

[3]. 
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Figure 3.6 Directional exceedance probability of 10 m height wind speed at 

EINS-2 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval. 
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Table 3.3 Directional 10-min extreme wind speed, 10 m height, at EINS-2 

22.5° Directional Extreme Wind Speed , WS [m/s], 10m, 10 min 

Direction (WD 
[°N-from]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

0 19.1 22.4 23.7 26.4 27.0 27.3 30.9 34.9 

22.5 17.9 22.5 23.7 26.2 27.0 27.2 30.9 34.9 

45 21.9 24.7 25.8 28.3 28.9 29.4 33.5 38.6 

67.5 21.7 24.5 25.6 28.1 28.7 29.1 33.0 36.9 

90 21.9 24.7 25.9 28.3 28.9 29.3 32.9 37.3 

112.5 22.6 25.2 26.1 28.4 28.9 29.3 32.4 36.0 

135 23.4 25.6 26.5 28.4 29.1 29.3 32.5 36.1 

157.5 24.1 26.2 27.0 28.8 29.3 29.6 32.2 35.3 

180 25.5 27.8 28.5 30.1 30.7 30.9 33.6 36.6 

202.5 25.7 28.2 29.2 31.2 32.0 32.2 36.1 40.4 

225 26.1 28.8 29.9 32.4 33.2 33.5 37.8 42.7 

247.5 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

270 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

292.5 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

315 26.8 30.1 31.4 34.3 35.1 35.5 39.7 44.7 

337.5 24.9 28.0 29.2 32.0 32.7 33.2 37.4 42.3 

Table 3.4 Directional 10-min extreme wind speed, 30 m height, at EINS-2 

22.5° Directional Extreme Wind Speed , WS [m/s], 30m, 10 min 

Direction (WD 
[°N-from]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 29.9 33.6 35.1 38.3 39.2 39.7 44.4 49.9 

0 21.3 25.0 26.4 29.4 30.1 30.5 34.5 38.9 

22.5 20.0 25.1 26.4 29.3 30.1 30.4 34.5 38.9 

45 24.5 27.6 28.8 31.6 32.3 32.8 37.4 43.0 

67.5 24.2 27.4 28.6 31.3 32.1 32.4 36.9 41.2 

90 24.5 27.6 28.9 31.6 32.3 32.7 36.8 41.6 

112.5 25.2 28.1 29.2 31.7 32.3 32.7 36.2 40.1 

135 26.2 28.6 29.5 31.7 32.4 32.7 36.3 40.3 

157.5 26.9 29.3 30.1 32.2 32.7 33.0 35.9 39.4 

180 28.4 31.0 31.8 33.6 34.2 34.5 37.5 40.9 

202.5 28.7 31.5 32.5 34.8 35.7 35.9 40.3 45.1 

225 29.2 32.2 33.4 36.2 37.0 37.4 42.2 47.6 

247.5 29.9 33.6 35.1 38.3 39.2 39.7 44.4 49.9 

270 29.9 33.6 35.1 38.3 39.2 39.7 44.4 49.9 

292.5 29.9 33.6 35.1 38.3 39.2 39.7 44.4 49.9 

315 29.9 33.6 35.1 38.3 39.2 39.7 44.4 49.9 

337.5 27.8 31.2 32.5 35.7 36.5 37.0 41.7 47.3 
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4 Water Level 

This section presents a summary of the water level data basis 

established in [1], followed by a presentation of normal and extreme 

water level conditions. 

The water level data was adopted from the hydrodynamic model forced by 

CFSR established for EINS (HDEINS) in [2]. The water level consists of a tidal 

and a non-tidal (residual) component. The two components were separated by 

harmonic analysis (see Section 4.1.2). The water level dataset is denoted 

EINS-HD-CFSR. Table 4.1 summarises the metadata of the EINS-HD-CFSR 

dataset.  

 

Table 4.1 Metadata of the EINS-HD-CFSR dataset 

Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0). 

Name Value 

Dataset ID: EINS-HD-CFSR 

Start Date [UTC]: 1979-01-01 01:00:00 

End Date [UTC]: 2022-09-30 23:30:00 

Time Step [s]: 1800 

Cell Size [m]: ~400 (Island area) 

 

The water level data is relative to mean sea level (MSL). 

The water level analyses are presented in bins of 0.1 m. Table 4.2 presents the 

water level variables of the EINS-HD-CFSR dataset, including the bin sizes 

applied in figures and tables throughout this report. 

 

Table 4.2 Water level variables of the EINS-AT-CFSR dataset 

Variable name Abbrev.  Unit  Bin size 

Water Level – Total WLtotal mMSL 0.1 

Water Level – Tide WLtide mMSL 0.1 

Water Level - Residual WLresidual m 0.1 

 

The water level analyses cover the data period 1979-09-01 – 2022-08-31 

(43 years), a round number of years, which is preferrable for extreme value 

analyses. The normal conditions apply a 30-min interval (as the hindcast 

models), while the extreme conditions (J-EVA) apply a 1-hour interval (as 

native in CFSR).  

The main body of this report presents results at EINS-2 (the location of max 

Hm0), while results at all analysis points are given in the data reports (listed in 

Table 11.1) which are attached to this report. The data reports contain all 

(scatter) tables and figures presented below. 
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4.1 Normal water level conditions 

The normal water level conditions are presented in terms of: 

• Time series 

• Tidal levels 

• Histogram 

• Monthly statistics 

 

4.1.1 Time series 

Figure 4.1 shows a time series of water level at EINS-2 during the 43-year 

period, for total, tidal, and residual components. The ‘de-tiding’ of water level is 

explained in Section 4.1.2. The highest total and residual water levels are 

1.67 mMSL and 1.59 m (6th Nov. 1987). The tidal levels are given in  

Section 4.1.2. 

 

Figure 4.1 Time series of water level at EINS-2 

 

4.1.2 Tidal levels 

The tides are weak at EINS, but to quantify this, astronomical water levels (tidal 

levels) are provided below. The levels were calculated using harmonic analysis 

to separate the tidal and non-tidal (residual) components of the total water level 

time series from the hydrodynamic model (after subtracting the mean of the 

data).  

Figure 4.1 shows the time series of the total, astronomical tidal and residual 

water level at EINS-2, while Table 4.3 summarises the astronomical water 

levels. The tide can be characterised as semi-diurnal (i.e., two high tides per 

day). The HAT is +0.38 mMSL and LAT -0.33 mMSL, giving a total tidal 

envelope of 0.71 m. 

The harmonic analysis was conducted using the U-tide toolbox, [10], which is 

based on the IOS tidal analysis method by the Institute of Oceanographic 

Sciences as described in [11], and integrates the approaches defined in [12] 

and [13]. The residual water level was derived by subtracting the predicted tidal 

level from the total water level. The astronomical water levels are defined as 

(https://ntslf.org/tgi/definitions):   

https://ntslf.org/tgi/definitions
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• HAT: Maximum predicted WL 

• MHWS:  Average of the two successive high waters reached during the 

 24 hours when the tidal range is at its greatest (spring tide) 

• MHWN:  Average of the two successive high waters reached during the 

 24 hours when the tidal range is at its lowest (neap tide) 

• MLWN: Average of the two successive low waters reached during the

 24 hours when the tidal range is at its lowest (neap tide) 

• MLWS: Average of the two successive low waters reached during the

 24 hours when the tidal range is at its greatest (spring tide) 

• LAT: Minimum predicted WL 

 

Table 4.3 Tidal levels at EINS-2 

Tidal level Abbreviation Value Unit 

Highest astronomical tide HAT 0.38 mMSL 

Mean high water springs MHWS 0.25 mMSL 

Mean high water neaps MHWN 0.13 mMSL 

Mean sea level MSL (z0) 0.00 mMSL 

Mean low water neaps MLWN -0.13 mMSL 

Mean low water springs MLWS -0.19 mMSL 

Lowest astronomical tide LAT -0.33 mMSL 

 

4.1.3 Histogram 

Figure 4.2 shows a histogram of total water level at EINS-2.  

  

Figure 4.2 Histogram of total water level at EINS-2 
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4.1.4 Monthly statistics 

Figure 4.3 shows monthly statistics of total water level at EINS-2. The monthly 

mean water level varies within ± 0.1 m during the year, being lowest in 

spring/summer and highest in winter. The highest (+1.7 mMSL), as well as the 

lowest (-1.2m MSL) water level, occurs during winter (Nov. – Feb.). 

 

 

Figure 4.3 Monthly statistics of total water level at EINS-2. 
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4.2 Extreme water level conditions 

The extreme water level conditions are estimated following the steps outlined 

in Appendix D: J-EVA Summary. The input water level time series was from the 

HDEINS model. The storm events selected for the J-EVA analyses are 

separately chosen for the high and low water levels. Only seasonal variability is 

considered as explained in Section 14.2.1, as there is no directionality 

associated to water level. Filtering of the storm events is carried out using a 

criteria of regression quantile > 0.7 on the storm events. The resulting 

‘retained’ and ‘removed’ events are shown as an example for the HWLres in 

Figure 4.4. Similar selection is made for LWLres, HWLtot, and LWLtot.  

A J-EVA statistical model (see Section 14.3) has been set up, followed by 

simulation (see Section 14.4) to estimate the extremes of the high and low 

water levels. The extreme water levels are presented separately for the 

expected construction completion in 2033 and for the expected lifetime of the 

island, which is (until) 2113.  

 

Figure 4.4 Selected events for residual high water level, HWLres at EINS-2. 

Events above the 0.7 quantiles are retained for the J-EVA analysis. 
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4.2.1 Extreme high water levels 

Figure 4.5 and Figure 4.6 show the best estimate of the residual and total high 

water level, respectively, from an 80,000-year simulation, which is used to 

calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return periods. 

Best estimates for larger return periods are calculated based on simulating up 

to 8 x 106 years of events, where the minimum number of exceedances Ne = 

100 is chosen for the 80,000-year return period. The extreme values are 

presented (Table 4.4 - Table 4.7) for a maximum return period of 10,000-year. 

The model fits the data, which is indicated by the dashed black line, quite well 

for larger return periods. For smaller periods (<10 years), there is a slight 

overestimation because the presented (example) fit to the spline model is 

made based on data that is representative of return periods that are larger than 

10 years.  

 

Extreme High Water Levels for year 2033 

Table 4.4 provides the extreme residual and total high water levels for the 

expected construction completion in year 2033.  

 

Table 4.4 Extreme High Water Levels for year 2033 at EINS-2 

Variable 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

HWLtot 
[mMSL] 1.2 1.4 1.5 1.7 1.7 1.8 2.1 2.4 

HWLres 
[mMSL] 1.0 1.3 1.4 1.6 1.7 1.7 2.0 2.3 

 

Extreme High Water Levels for year 2113 

Table 4.5 provides the extreme residual and total high water for the expected 

lifetime of the Island year 2113. Following Part A, [1], a sea level rise (SLR) of 

0.8 m was added to the HWL relative to the vertical reference of today.  

 

Table 4.5 Extreme High Water Levels for year 2113 at EINS-2 

The levels are relative to the vertical reference (MSL) of today. 

Variable 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

HWLtot 
[mMSL] 2.0 2.2 2.3 2.5 2.5 2.6 2.9 3.2 

HWLres 
[mMSL] 1.8 2.1 2.2 2.4 2.5 2.5 2.8 3.1 
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Figure 4.5 Extreme Residual High Water Level (for year 2033) at EINS-2 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval of the estimate. 

 

Figure 4.6 Extreme Total High Water Level (for year 2033) at EINS-2 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval of the estimate. 
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4.2.2 Extreme low water levels 

Figure 4.7 and Figure 4.8 show the best estimate of the residual and total low 

water level, respectively, from 80,000-year simulation, in the same manner as 

for high water levels above. 

The model fits the data, which is indicated by the dashed black line, quite well 

for LWLres but slightly overestimates (order of 0.1 m) for LWLtot, but overall, the 

fit is quite good since the input hindcast data lies within the credible intervals of 

the spline model fit. 

 

Extreme Low Water Levels for year 2033 

Table 4.6 provides the extreme residual and total low water levels for the 

expected construction completion in year 2033. 

 

Table 4.6 Extreme Low Water Levels for year 2033 at EINS-2 

Variable 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

LWLtot [mMSL] -0.8 -1.0 -1.0 -1.1 -1.2 -1.2 -1.4 -1.6 

LWLres 
[mMSL] -0.7 -0.9 -0.9 -1.1 -1.1 -1.1 -1.3 -1.6 

 

Extreme Low Water Levels for year 2113 

Table 4.7 provides the extreme residual and total low water levels for the 

expected lifetime of the island year 2113. Following Part A, [1], a sea level rise 

(SLR) of 0.8 m was added to the LWL relative to the vertical reference (MSL) of 

today. 

 

Table 4.7 Extreme Low Water Levels for year 2113 at EINS-2 

Levels are relative to the vertical reference (MSL) of today. 

Variable 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

LWLtot 
[mMSL] 0.0 -0.2 -0.2 -0.3 -0.4 -0.4 -0.6 -0.8 

LWLres 
[mMSL] 0.1 -0.1 -0.1 -0.3 -0.3 -0.3 -0.5 -0.8 
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Figure 4.7 Extreme Residual Low Water Level (for year 2033) at EINS-2. 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval of the estimate. 

 

Figure 4.8 Estimates of Total Low Water Level (for year 2033) at EINS-2. 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval of the estimate. 
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5 Current 

This section presents a summary of the current data basis established in 

[1], followed by a presentation of normal and extreme current conditions. 

The current data is adopted from the hydrodynamic model forced by CFSR 

established for EINS (HDEINS) [1]. The current consists of a tidal and a non-tidal 

(residual) component. The two components were separated by harmonic 

analysis (see Section 4.1.2). The current dataset is denoted EINS-HD-CFSR. 

Table 5.1 summarizes the metadata of the EINS-HD-CFSR dataset.  

 

Table 5.1 Metadata of the EINS-HD-CFSR dataset. 

Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0). 

Name Value 

Dataset ID: EINS-HD-CFSR 

Start Date [UTC]: 1979-01-01 01:00:00 

End Date [UTC]: 2022-09-30 23:30:00 

Time Step [s]: 1800 

Cell Size [m]: ~400 (Island area) 

 

The current data is considered representative of 1-hour average values of 

depth-average and is given at 30-min interval. 

The current analyses are presented in speed bins of 0.05 m/s and directional 

bins of 22.5°. Table 5.2 presents the variables of the EINS-HD-CFSR dataset, 

including the bin sizes applied in figures and tables throughout this report. 

 

Table 5.2 Current variables of the EINS-HD-CFSR dataset. 

The current direction is to where the current is flowing. 

Variable name Abbrev.  Unit  Bin size 

Current speed - Depth-average - Total CSavg,tot m/s 0.05 

Current direction - Depth-average - Total CDavg,tot °N-to 22.5 

 

The current analyses cover the data period 1979-09-01 – 2022-08-31 

(43 years), a round number of years, which is preferable for extreme value 

analyses. The normal conditions apply a 30-min interval (as the hindcast 

models), while the extreme conditions (J-EVA) apply a 1-hour interval (as 

native in CFSR).  

The main body of this report presents results at EINS-2 (the location of max 

Hm0), while results at all analysis points are given in the data reports (listed in 

Table 11.1) which are attached to this report. The data reports contain all 

(scatter) tables and figures presented below. 
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5.1 Normal current conditions 

The normal current conditions are presented in terms of: 

• Normal current profile 

• Time series 

• Current roses 

• Histogram 

• Monthly statistics 

• Directional statistics 

• Maps of mean current speed 

 

5.1.1 Normal current profile 

Current profiles are assessed in Section 5 of Part A, [1].  

For normal (mean) conditions, it is recommended to apply a power profile with 

α = 1/7, cf. Section 4.1.4.2 in DNV RP-C205 [3], with the surface (z = 0) current 

speed estimated as 8/7 (1.14) times the depth-averaged current speed.  

However, it is noted that individual current profiles deviate substantially from 

the (mean) power profile, and the (mean) normal current profile can, therefore, 

not be applied to represent all single/individual current profiles.  

 

5.1.2 Time series 

Figure 5.1 shows a time series of current speed at EINS-2 during the 43-year 

hindcast period for total, tidal, and residual. The ‘de-tiding’ of current speed 

follows the method given in Section 4.1.2 for water level. The highest total and 

residual current speeds are almost the same, with values of 1.07 and 1.06 m/s, 

respectively (in 1990).  

 

Figure 5.1 Time series of current speed at EINS-2 
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5.1.3 Current roses 

Figure 5.2, Figure 5.3, and Figure 5.4 show current roses for total, tidal, and 

residual conditions at EINS-2. The total rose shows currents to most directions 

but with a predominance of current going towards northeast, which is due to 

the prevailing residual currents going towards the northeast. The northwest has 

the least occurrence of currents going to. The tidal currents are weak and 

travel mainly toward southeast, and secondarily towards north (the tide is < 0.1 

m/s about 50% of the time). 

 

  

Figure 5.2 Total current rose at EINS-2 
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Figure 5.3 Tidal current rose at EINS-2 

 

 

Figure 5.4 Residual current rose at EINS-2 
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5.1.4 Histogram  

Figure 5.5 shows a histogram of current speed at EINS-2.  

 

Figure 5.5 Histogram of current speed at EINS-2 
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5.1.5 Monthly statistics 

Figure 5.6 shows monthly statistics of current speed at EINS-2. The monthly 

mean current speed varies within 0.15 - 0.2 m/s during the year, being weakest 

in summer and strongest in winter. The strongest current speeds (up to 

1.07 m/s) occur during autumn to winter (Oct. – Jan.). 

 

Figure 5.6 Monthly statistics of current speed at EINS-2 

5.1.6 Directional statistics 

Figure 5.7 shows directional statistics of current speed at EINS-2. The mean 

current speed is strongest towards the northeast (45°) of about 0.22 m/s, and 

weakest towards northwest (315°) of about 0.16 m/s. The strongest max 

current speeds occur towards the northeast and reach 1.06 m/s. 

 

Figure 5.7 Directional statistics of current speed at EINS-2 
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5.1.7 Maps of normal current speed 

Figure 5.8 presents the spatial variation across EINS of the mean total depth-

averaged current speed. Mean values of CStot from the hindcast data at each 

mesh element are calculated and the variation is presented as contours. As 

seen, there is hardly any variation (0.17±0.03 m/s) across the EINS area.  

 

Figure 5.8 Spatial variation across EINS area of the mean total depth-averaged current speed 

The colour map shows the current speed, and the contours show the water depth. 
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5.2 Extreme current conditions 

The extreme current conditions are estimated following the steps outlined in 

Appendix D: J-EVA Summary. The input depth-average current time series 

was from the HDEINS model. The total current speed is composed of two 

effects, namely tidal and residual. The residual current contribution can further 

be decomposed into contributions due to several effects, e.g., wind-driven, 

density-driven etc. At EINS, the extreme currents are dominated by the wind-

induced residual. The storm events selected for the J-EVA analyses are based 

on the directional and seasonal variability (see Section 14.2.1), with filtering 

carried out using a criteria of regression quantile > 0.65 that is applied on the 

residual depth-average current speed storm events. The resulting ‘retained’ 

and ‘removed’ events are shown in Figure 5.9. 

 

Figure 5.9 Selected events for residual depth-average current speed, CSres 

at EINS-2. 

Events above the 0.65 quantile are retained for the J-EVA analysis. 
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5.2.1 Extreme current profile 

Current profiles are assessed in Section 5 in Part A, [1]. A generally applicable 

and feasible current profile for currents during extreme events does not exist.  

For extreme surface (z = 0 m) currents, it is recommended to apply a factor of 

1.3 to convert the depth-average current speed to surface (z = 0 m). This is 

based on detailed assessment of measured and modelled 3D current data. 

For extreme near-seabed (1 m above) currents, it is recommended to apply the 

power profile with α = 1/7, cf. Section 4.1.4.2 in DNV RP-C205 [3], and the 

surface (z = 0) current speed estimated as 8/7 (1.14) times the depth-averaged 

current speed. This corresponds to a factor ranging from 0.65 at 25 m depth to 

a factor of 0.72 at 50 m depth.  

5.2.2 Extreme current speed 

A J-EVA statistical model (see Section 14.3) has been set up for extreme 

residual depth-average current speed followed by simulation including the 

directional scaling (see Section 14.4) to estimate the extremes. The current 

direction (going-to) at the time of peak residual current speed and the season 

are used as covariates. It is to be noted that the total current speed is 

estimated by combining the residual current speed estimated using the J-EVA 

model and the random sampling of the tidal component from the input hindcast 

time series at the time of simulation. Furthermore, CDtot may not be fully 

correlated with CDres. Consequently, directional variation of CStot will not be 

correlated to that of CSres. 

Figure 5.10 shows the directional annual number of exceedances of the 

residual depth-average current speed estimated from an 80,000-year 

simulation in the same manner as for water level.  

The model fits the omni-directional data quite well, as well as in the dominating 

northeast and southwest directions (see Figure 5.11). From a J-EVA point of 

view, it is also important that all data points representing storm events are 

within the light blue shaded area since this means that they have been 

resampled in the simulation. 

Table 5.3 and Table 5.4 provides the values of the directional extreme depth-

average residual and total current speeds. The directional extreme values are 

scaled according to DNV-RP-C205, [3]. 

For a few (weak) directional sectors there was no historical storm that 

corresponded to a 1-year return period. In those cases, the directional 1-year 

value was estimated by a log-linear extrapolation from the 5 and 10 year return 

period values.  

The current profile in Section 5.2.1, is used to calculate the extreme surface 

and near-seabed current speeds. Table 5.5 and Table 5.6 provides the 

directional extreme surface residual and total current speeds, while Table 5.7 

and Table 5.8 provides the directional extreme near-seabed residual and total 

current speeds. 
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Figure 5.10 Directional exceedance probability of Residual Current Speed 

𝐂𝐒𝐫𝐞𝐬 at EINS-2 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval. 
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5.2.3 Extreme current rose 

Figure 5.11 shows the extreme residual and total current rose using the storm 

events selected for the J-EVA analysis (see Section 5.2 and Figure 5.9). 

Extreme currents have a strong directionality, with northeast and southwest 

(going-to) being dominant.  

 

Figure 5.11 Extreme residual current rose using the storm events selected 

for J-EVA analysis. 

 

Figure 5.12 Extreme total current rose using the storm events selected for 

J-EVA analysis. 
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Table 5.3 Directional Extreme Depth-Average Residual Current Speed at 

EINS-2 

22.5° Directional Extreme Depth-Average Residual Current Speed, CSres [m/s] 

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 0.6 0.8 0.9 1.0 1.0 1.1 1.3 1.4 

0 0.5 0.7 0.7 0.9 0.9 0.9 1.1 1.3 

22.5 0.6 0.8 0.9 1.0 1.0 1.1 1.3 1.4 

45 0.6 0.8 0.9 1.0 1.0 1.1 1.3 1.4 

67.5 0.6 0.8 0.8 1.0 1.0 1.0 1.2 1.4 

90 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.2 

112.5 0.4 0.6 0.6 0.8 0.8 0.8 1.0 1.1 

135 0.4 0.6 0.6 0.7 0.8 0.8 0.9 1.1 

157.5 0.4 0.6 0.6 0.7 0.8 0.8 0.9 1.1 

180 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.1 

202.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.1 

225 0.5 0.6 0.7 0.8 0.8 0.8 1.0 1.1 

247.5 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1.1 

270 0.3 0.5 0.5 0.6 0.7 0.7 0.9 1.0 

292.5 0.3 0.5 0.5 0.7 0.7 0.7 0.9 1.0 

315 0.2 0.4 0.5 0.6 0.6 0.7 0.8 1.0 

337.5 0.4 0.5 0.6 0.7 0.7 0.7 0.9 1.1 

Table 5.4 Directional Extreme Depth-Average Total Current Speed at 

EINS-2 

22.5° Directional Extreme Depth-Average Total Current Speed, CS [m/s] 

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

0 0.6 0.7 0.8 0.9 1.0 1.0 1.2 1.3 

22.5 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

45 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

67.5 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

90 0.6 0.7 0.8 0.9 0.9 0.9 1.1 1.3 

112.5 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.2 

135 0.5 0.6 0.7 0.8 0.8 0.8 1.0 1.2 

157.5 0.5 0.6 0.6 0.8 0.8 0.8 1.0 1.1 

180 0.5 0.6 0.7 0.8 0.8 0.8 0.9 1.1 

202.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

225 0.5 0.6 0.7 0.8 0.8 0.8 1.0 1.1 

247.5 0.4 0.6 0.6 0.7 0.7 0.8 0.9 1.1 

270 0.4 0.5 0.5 0.7 0.7 0.7 0.9 1.0 

292.5 0.3 0.5 0.5 0.7 0.7 0.7 0.9 1.0 

315 0.3 0.5 0.5 0.7 0.7 0.7 0.9 1.1 

337.5 0.4 0.6 0.6 0.8 0.8 0.8 1.0 1.1 
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Table 5.5 Directional Extreme Surface Residual Current Speed at EINS-2 

22.5° Directional Extreme Surface Residual Current Speed, CSres, surface [m/s]  

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 0.8 1.0 1.1 1.3 1.4 1.4 1.6 1.9 

0 0.7 0.9 1.0 1.1 1.2 1.2 1.4 1.7 

22.5 0.8 1.0 1.1 1.3 1.4 1.4 1.6 1.9 

45 0.8 1.0 1.1 1.3 1.4 1.4 1.6 1.9 

67.5 0.8 1.0 1.1 1.3 1.3 1.4 1.6 1.9 

90 0.6 0.8 0.9 1.1 1.1 1.1 1.4 1.7 

112.5 0.6 0.8 0.8 1.0 1.0 1.0 1.3 1.5 

135 0.6 0.7 0.8 1.0 1.0 1.0 1.2 1.5 

157.5 0.6 0.7 0.8 1.0 1.0 1.0 1.2 1.5 

180 0.6 0.8 0.8 1.0 1.0 1.0 1.2 1.4 

202.5 0.7 0.9 0.9 1.1 1.1 1.1 1.3 1.5 

225 0.7 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

247.5 0.5 0.7 0.8 0.9 1.0 1.0 1.2 1.5 

270 0.4 0.6 0.7 0.8 0.9 0.9 1.1 1.4 

292.5 0.4 0.6 0.7 0.9 0.9 0.9 1.1 1.4 

315 0.2 0.5 0.6 0.8 0.8 0.9 1.1 1.4 

337.5 0.5 0.7 0.7 0.9 0.9 1.0 1.2 1.5 

Table 5.6 Directional Extreme Surface Total Current Speed at EINS-2 

22.5° Directional Extreme Surface Total Current Speed, CStot, surface [m/s]  

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 1.0 1.2 1.3 1.5 1.5 1.5 1.8 2.1 

0 0.9 1.1 1.2 1.3 1.3 1.4 1.6 1.8 

22.5 1.0 1.2 1.3 1.5 1.5 1.5 1.8 2.1 

45 1.0 1.2 1.3 1.5 1.5 1.5 1.8 2.1 

67.5 1.0 1.2 1.2 1.4 1.5 1.5 1.7 2.0 

90 0.8 1.0 1.1 1.2 1.3 1.3 1.5 1.8 

112.5 0.8 0.9 1.0 1.2 1.2 1.2 1.4 1.7 

135 0.7 0.9 1.0 1.1 1.2 1.2 1.4 1.6 

157.5 0.7 0.9 0.9 1.1 1.1 1.2 1.4 1.6 

180 0.7 0.9 0.9 1.1 1.1 1.1 1.3 1.5 

202.5 0.8 1.0 1.0 1.2 1.2 1.2 1.4 1.6 

225 0.8 0.9 0.9 1.1 1.1 1.1 1.3 1.6 

247.5 0.6 0.8 0.9 1.0 1.1 1.1 1.3 1.5 

270 0.5 0.7 0.8 0.9 1.0 1.0 1.2 1.4 

292.5 0.5 0.7 0.8 1.0 1.0 1.0 1.3 1.5 

315 0.4 0.7 0.8 0.9 1.0 1.0 1.2 1.5 

337.5 0.6 0.8 0.9 1.1 1.1 1.1 1.4 1.6 
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Table 5.7  Directional Extreme Near-Seabed Residual Current Speed at 

EINS-2 

22.5° Directional Extreme Near-seabed Residual Current Speed, CSres, near-
seabed [m/s]  

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 0.5 0.6 0.6 0.7 0.7 0.8 0.9 1.0 

0 0.4 0.5 0.5 0.6 0.6 0.6 0.8 0.9 

22.5 0.5 0.6 0.6 0.7 0.7 0.8 0.9 1.0 

45 0.5 0.6 0.6 0.7 0.7 0.8 0.9 1.0 

67.5 0.5 0.6 0.6 0.7 0.7 0.7 0.9 1.0 

90 0.3 0.4 0.5 0.6 0.6 0.6 0.7 0.9 

112.5 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 

135 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.8 

157.5 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.8 

180 0.3 0.4 0.4 0.5 0.5 0.5 0.7 0.8 

202.5 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.8 

225 0.4 0.4 0.5 0.6 0.6 0.6 0.7 0.8 

247.5 0.3 0.4 0.4 0.5 0.5 0.5 0.7 0.8 

270 0.2 0.3 0.4 0.5 0.5 0.5 0.6 0.8 

292.5 0.2 0.3 0.4 0.5 0.5 0.5 0.6 0.8 

315 0.1 0.3 0.3 0.4 0.5 0.5 0.6 0.7 

337.5 0.2 0.4 0.4 0.5 0.5 0.5 0.6 0.8 

Table 5.8 Directional Extreme Near-Seabed Total Current Speed at EINS-2 

22.5° Directional Extreme Near-seabed Total Current Speed, CStot, near-seabed 
[m/s]  

Direction (CD [°N-
to]) 

Return Period [years] 

1 5 10 50 80 100 1000 10000 

Omni 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

0 0.5 0.6 0.6 0.7 0.7 0.8 0.9 1.0 

22.5 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

45 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

67.5 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1 

90 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1.0 

112.5 0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.9 

135 0.4 0.5 0.5 0.6 0.6 0.7 0.8 0.9 

157.5 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.9 

180 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.8 

202.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.9 

225 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.9 

247.5 0.4 0.4 0.5 0.6 0.6 0.6 0.7 0.8 

270 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.8 

292.5 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.8 

315 0.2 0.4 0.4 0.5 0.6 0.6 0.7 0.8 

337.5 0.4 0.5 0.5 0.6 0.6 0.6 0.8 0.9 
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5.2.4 Maps of extreme current speed 

Figure 5.13 - Figure 5.15 present the spatial variation across EINS of total 

depth-averaged current speed for return periods of 1, 50 and 100 years. The 

extreme values of CStot from the hindcast data at each mesh element were 

calculated using traditional extreme value analysis, T-EVA (see Section 12). 

The J-EVA extremes of CStot at the five analysis locations were then used to 

scale the extremes in each mesh element using the inverse distance weighting 

method, see [14]. The maximum CStot varies within about 1.10±0.15 m/s for the 

100-year return period. 

 

Figure 5.13 Spatial variation across EINS of total depth-averaged current speed for return period of 

1 year 

The colour map shows the current speed, and the contours show water depth. 
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Figure 5.14 Spatial variation across EINS of total depth-averaged current speed for return period of 

50 years 

The colour map shows the current speed, and the contours shows water depth. 
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Figure 5.15 Spatial variation across EINS of total depth-averaged current speed for return period of 

100 years 

The colour map shows the current speed, and the contours show water depth. 
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6 Waves 

This section presents a summary of the wave data basis established in 

[1], followed by a presentation of normal and extreme wave conditions. 

The wave data is adopted from the spectra wave model forced by CFSR 

established for EINS (SWEINS) in [2], containing total, wind-sea, and swell 

partition of the sea state (separated by the wave-age criterion as defined in 

Section 5.1 of [15]). The wave dataset is denoted EINS-SW-CFSR. Table 6.1 

summarises the metadata of the EINS-SW-CFSR dataset.  

Table 6.1 Metadata of the EINS-SW-CFSR dataset 

Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0). 

Name Value 

Dataset ID: EINS-SW-CFSR 

Start Date [UTC]: 1979-01-01 01:00:00 

End Date [UTC]: 2022-09-30 23:30:00 

Time Step [s]: 1800 

Cell Size [m]: ~400 (Island area) 

 

The wave data is considered representative of 3-hour average sea state and is 

given at 30-min interval.  

The wave analyses are presented in height bins of 0. 5 m, period bins of 0.5 s, 

and directional bins of 22.5°. Table 6.2 presents the variables of the EINS-SW-

CFSR dataset, incl. the bin sizes applied in analyses throughout this report. 

Table 6.2 Wave variables of the EINS-SW-CFSR dataset 

The wave direction is from where the wave is coming. 

Variable name Abbrev.  Unit  Bin size 

Significant wave height Hm0 m 0.5 

Peak wave period Tp s 0.5 

Mean wave period T01 s 0.5 

Zero-crossing wave period T02 s 0.5 

Peak wave direction PWD °N (clockwise from) 22.5 

Mean wave direction MWD °N (clockwise from) 22.5 

Direction standard deviation DSD ° 5 

The wave analyses cover the data period 1979-09-01 – 2022-08-31 (43 years), 

a round number of years, which is preferrable for extreme value analyses. The 

normal conditions apply a 30-min interval (as the hindcast models), while the 

extreme conditions (J-EVA) apply a 1-hour interval (as native in CFSR).  

The main body of this report presents results at EINS-2 (the location of max 

Hm0), while results at all analysis points are given in the data reports (listed in 

Table 11.1) which are attached to this report. The data reports contain all 

(scatter) tables and figures presented below. 
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6.1 Normal wave conditions 

The normal wave conditions are presented in terms of: 

• Time series 

• Wave rose 

• Histogram 

• Monthly statistics 

• Directional statistics 

• Scatter diagrams (Hm0) 

• Wind-wave misalignment 

• Assessment of wave spectra, see Part A, [1].  

• Maps of mean Hm0 

 

6.1.1 Time series 

Figure 6.1 show time series of the total, wind-sea, and swell partition of Hm0, 

Tp, and T02 at EINS-2 during the 43 years hindcast period. The mean is 1.94 m, 

and the maximum is 11.22 m (6th Nov. 1985). 

 

 

Figure 6.1 Time series of Hm0, Tp, and T02 at EINS-2 
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6.1.2 Wave roses 

Figure 6.2 to Figure 6.4  show wave roses at EINS-2 based on Hm0 and MWD 

for total, wind-sea and swell respectively. As typical for the North Sea, the 

waves arrive primarily from the northwest, reflecting the direction that is open 

to the North Atlantic, and allows swell to enter the North Sea. Waves from 

easterly directions occur less than about 20% of the time. 

 

Figure 6.2 Wave rose at EINS-2; Hm0 vs MWD – Total 

 

 

Figure 6.3 Wave rose at EINS-2; Hm0 vs MWD – Wind-Sea 
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Figure 6.4 Wave rose at EINS-2; Hm0 vs MWD – Swell 

 

6.1.3 Histogram 

Figure 6.5 shows a histogram of Hm0 at EINS-2.  

 

Figure 6.5 Histogram of Hm0 at EINS-2 
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6.1.4 Monthly statistics 

Figure 6.6 shows monthly statistics of significant wave height, Hm0, at EINS-2. 

The mean varies from 1.4 m during summer to 2.5 m during winter. The 

highest waves occurred during the months of Nov., Dec., and Jan. 

 

Figure 6.6 Monthly statistics of significant wave height at EINS-2 

 

6.1.5 Directional statistics 

Figure 6.7 shows directional statistics of significant wave height at EINS-2. The 

mean is highest from the northwest at about 2.1 m, and lowest from north at 

about 1.2 m. The highest waves occur from the north-western sector. 

 

Figure 6.7 Directional statistics of significant wave height at EINS-2 
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6.1.6 Scatter diagrams (Hm0) 

This section presents scatter diagrams of Hm0 against the following other 

metocean parameters at EINS-2: 

• Figure 6.8 WS10 vs. Hm0 

• Figure 6.9 Hm0 vs. Tp 

• Figure 6.10 Hm0 vs. T02 

• Figure 6.11 Hm0 vs. WL 

• Figure 6.12 Hm0 vs. CS 

 

Each scatter diagram includes quantiles and functional fits to the 95%-tile 

highest data (except for WL and CS).  

The scatter of WS10 vs Hm0 shows a reasonable correlation, albeit with some 

scatter due to the (co-)occurrence of swell in the North Sea. 

The wave periods (Tp and T02) are very well correlated with Hm0, especially for 

the high waves that are dominated by local wind. 

There is a weak correlation between WL (total) and Hm0, indicating a slight 

trend of positive high water during high waves. 

The total current speed (CS) is almost entirely uncorrelated with Hm0, albeit 

there is a weak trend of stronger currents during high waves, but with 

significant scatter.  
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Figure 6.8 Scatter diagram of WS10 vs Hm0 at EINS-2 
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Figure 6.9 Scatter diagram of Hm0 vs Tp at EINS-2 

 



 

  54 

 

Figure 6.10 Scatter diagram of Hm0 vs T02 at EINS-2 
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Figure 6.11 Scatter diagram of Hm0 vs WL at EINS-2 
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Figure 6.12 Scatter diagram of Hm0 vs CS at EINS-2 
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6.1.7 Wind-wave misalignment 

The wind-wave misalignment is calculated as WD10 minus the MWD. Figure 

6.13 presents the misalignment vs. WS10 at EINS-2. The curves indicate the 

mean misalignment for each wind direction sector. The misalignment shows 

high scatter for wave height less than ~3 m, while the scatter (misalignment) is 

relatively low for higher waves when the wind starts to pick up because 

extreme waves in the North Sea are generally dominated by the local wind.  

Figure 6.14 shows a trend of most frequent misalignment between 0 – 22.5°. 

For omni and almost all directions the main probability of misalignment is within 

±45. Hence, the wind and wave directions are generally reasonably aligned. 

 

Figure 6.13 Wind-wave misalignment vs. Hm0 at EINS-2  

 

Figure 6.14 Probability of wind-wave misalignment per direction at EINS-2  

Misalignment [°] 
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6.1.8 Swell waves 

This section presents a qualitative assessment of wind-sea and swell waves. 

Figure 6.1 presents time series of the total, wind-sea, and swell partition of Hm0 

at EINS-2, and Figure 6.15 presents a scatter plot of Hm0,Swell vs Hm0. The 

figures show a predominance of wind-sea for the higher sea states. 

Figure 6.16 presents the average ratio of wind-sea to total energy (blue) and 

swell to total energy (orange), (the energy being proportional to the square of 

Hm0). For the lower sea states (Hm0 < 2.5 m, which occurs ~75% of the time), 

the swell partition is responsible for more than half (50-80%) of the total wave 

energy, while for moderate sea states (2.5 m < Hm0 < 7.0 m, which occurs 

~25% of the time) the wind-sea partition is responsible for the majority (50-

90%) of the energy.  

For the very highest sea states (Hm0 > 7.0 m, which occurs <0.3% of the time), 

the swell partition constitutes less than 15% of the total energy. Such 

quantification obviously depends on the chosen separation criterion between 

wind-sea and swell (in this case the wave-age, see Section 5.1 of [15]), and it 

should be considered whether this criterion is suitable for the purpose in mind.  

 

 

Figure 6.15 Scatter plot of Hm0,Swell vs Hm0 at EINS-2 
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Figure 6.16 Average ratio of wind-sea to total energy (blue) and swell to 

total energy (orange) vs. Hm0 (total) at EINS-2 

 

 

6.1.9 Assessment of wave spectra 

Assessment of wave spectra is addressed in Part A, [1]. For moderate and 

severe sea states, Hm0 > 1.5 m, the spectrum is often single-peaked and can 

be well represented by a JONSWAP spectrum. For information on JONSWAP 

gamma values, it is recommended to apply the guidelines in Section 3.5.5 of 

RP-C205 [16], i.e. defining 𝛾 based on Tp and Hm0. For low sea states, Hm0 < 

1.5m, the spectra are often bi-modal, and should be represented by a 

JONSWAP spectrum for each of the wind-sea and swell partitions separately.  

  



 

  60 

6.1.10 Maps of mean Hm0 

Figure 6.17 and Figure 6.18 present maps across the EINS site of the weighted 

mean significant wave height, Hm0, calculated as follows. 

Hm0 = [
1

𝑁
∑Hm0𝑖

𝑚

𝑁

𝑖=1

]

1
𝑚

 (6.1) 

where 𝑚 = (1,2) is the power coefficient, and 𝑁 is the total number of hindcast 

data points (m = 1 is the mean Hm0, while m = 2 is the mean wave energy). 

There is little variation across the EINS site with Hm0,m=1 of about 1.9 m. 

 

Figure 6.17 Spatial variation of Hm0 across the EINS site for 𝒎 = 𝟏 

The colour map shows the wave height, and the contours show water depth. 
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Figure 6.18 Spatial variation of Hm0 across the EINS site for 𝒎 = 𝟐 

The colour map shows the wave height, and the contours show water depth. 
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6.2 Extreme wave conditions 

The extreme current conditions are estimated following the steps outlined in 

Appendix D: J-EVA Summary. The input time series is from the SWEINS model. 

The storm events selected for the J-EVA analyses are based on the directional 

and seasonal variability (see Section 14.2.1) with filtering carried out using 

combined criteria of regression quantile and inverse wave age > 0.5 that is 

applied on the combined normalised storm events comprising of Hm0, CSres, 

and WS. The combination of the time series is carried out to not miss out on 

peak events of associated variables (CSres and WS) in case there is a small 

time shift in their peak events with respect to Hm0. The resulting ‘retained’ and 

‘removed’ events are shown in Figure 6.19. 

 

Figure 6.19 Selected events for the significant wave height Hm0 and wind 

speed WS at EINS-2. 

Events above the combined criteria of regression quantile and 

inverse wave age > 0.5 are retained for the J-EVA analysis. 
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6.2.1 Extreme significant wave height, Hm0 

This section provides the directional extremes of the marginal wave 

parameters and conditioned variables.  

A J-EVA statistical model (see Section 14.3) has been set up for extreme wave 

heights and conditioned (associated) variables, followed by simulation, 

including the directional scaling (see Section 14.4) to estimate the extremes. 

The storm model mean wave direction (MWD) and season have been used as 

co-variates and the model fitted to characteristic storm variable values 

(Hm0,p,eq, ln σeq ,Tp, etc.). Furthermore, for the long-term distribution, the Hm0,p,eq 

(equivalent peak Hm0 from the storm model) has been limited to 0.6 times the 

water depth (see Section 14.7). 

Figure 6.20 shows the best estimate of Hm0 using the integrated parameters of 

the posterior predictive distribution of Hm0 from an 80,000-year simulation, 

which is used to calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100- 

year return periods. Best estimates for larger return periods are calculated 

based on simulating up to 4 x 106 years of events, where the minimum number 

of exceedances Ne = 25 is chosen for the 80,000-year return period.  

The extreme values are presented (Table 6.3 - Table 6.13) for a maximum 

return period of 10,000- year. The figure also shows joint distributions of 

conditioned variables to Hm0, such as wave periods (Tp, T02), residual water 

level (WLres) and residual current speed (CSres). These subplots show hindcast 

data in black points with the simulated values from J-EVA in the coloured dots, 

where ‘cooler’ colours indicate a lower number of exceedances. Derived 

contours pertaining to return periods of 1, 5, 10, 50, 80 and 100 years are 

outlined in grey.  
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Figure 6.20 Estimates of marginal and conditioned variables from 10,000-

year simulation at EINS-2. 

Hindcast data is presented as black markers. The blue solid line 

(top-left) is the best estimate of Hm0 using the distribution parameters 

that are integrated over the posterior distribution. The blue shaded 

area (top-left) is the 2.5-97.5 % credible interval. Contours of 

conditioned variables shown as coloured dots from the result of a 

simulation of 10,000 years using the distribution parameters from the 

posterior predictive distribution at different return periods are shown 

for Tp (top-right), T02 (third row left), WLres (second row left), and 

CSres (second row right) against Hm0. Black dots show original 

hindcast. Warmer colours indicate a higher density of points. 
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Figure 6.21 shows the directional annual number of exceedances of the 

significant wave height estimated from an 80,000-year simulation, which is 

used to calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return 

periods (The 45-degree bins presented here are for visual inspection of 

directional fits. The final directional values are based on 22.5-degree bins).  

The best estimate predicts the significant wave height very well, as indicated 

by the good fit between the hindcast data (black line) and best estimate (blue 

line). The prediction in different directions is also good. 

 

Figure 6.21 Directional exceedance probability of Hm0. 

Hindcast data is shown in black. The blue line is the best estimate 

using the integrated posterior distribution parameters. The shaded 

area is the 2.5-97.5% credible interval. 
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Table 6.3 provides the values of the directional significant wave height. The 

directional extreme values are scaled according to DNV-RP-C205, [3].  

Warmer colours (red) indicate larger values. Large values of Hm0 are observed 

in the west and north-west directions, mainly due to large fetch as seen in 

Figure 1.1.  

 

Table 6.3 Extreme significant wave height, Hm0, at EINS-2 

Extreme significant wave height, Hm0 [m] 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 8.1 9.7 10.3 11.6 12.0 12.1 13.5 14.6 

0 5.7 6.9 7.4 8.6 8.9 9.1 10.5 11.6 

22.5 5.2 6.3 6.7 7.5 7.8 7.9 9.0 10.1 

45 5.3 6.2 6.6 7.3 7.5 7.6 8.5 9.3 

67.5 4.7 5.6 5.9 6.6 6.7 6.8 7.6 8.3 

90 4.5 5.3 5.6 6.3 6.5 6.6 7.3 8.0 

112.5 4.7 5.5 5.8 6.4 6.6 6.6 7.5 8.2 

135 5.1 5.9 6.2 6.9 7.1 7.2 8.1 9.0 

157.5 5.7 6.6 7.0 7.8 8.0 8.1 9.2 10.2 

180 6.6 7.6 8.0 8.8 9.0 9.1 10.1 11.3 

202.5 7.5 8.5 8.8 9.6 9.8 9.9 11.0 11.9 

225 7.9 8.9 9.3 10.1 10.3 10.4 11.5 12.5 

247.5 8.1 9.5 9.9 10.9 11.1 11.2 12.3 13.3 

270 8.1 9.7 10.3 11.6 11.9 12.0 13.0 14.0 

292.5 8.1 9.7 10.3 11.6 12.0 12.1 13.5 14.6 

315 8.1 9.7 10.3 11.6 12.0 12.1 13.5 14.6 

337.5 8.1 9.7 10.3 11.6 12.0 12.1 13.4 14.4 
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6.2.2 Maps of extreme Hm0 

Figure 6.22 to Figure 6.24 present maps of extreme Hm0 across the EINS 

island area for return periods of 1-, 50-, and 100 years. The extreme values of 

Hm0 from the hindcast data at each mesh element are calculated using T-EVA. 

The J-EVA extremes of Hm0 at the five analysis locations are then used to 

scale the extremes in each mesh element using the inverse distance weighting 

method, [14]. The maximum Hm0 of 11.2 and 11.6 m varies within about ±1 m 

for the 50- and 100-year return period. 

 

Figure 6.22 Spatial variation across EINS of Hm0 for return period of 1 year 

The colour map shows the wave height, and the contours show water depth. 
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Figure 6.23 Spatial variation across EINS of Hm0 for return period of 50 years 

The colour map shows the wave height, and the contours show water depth. 
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Figure 6.24 Spatial variation across EINS of Hm0 for return period of 100 years 

The colour map shows the wave height, and the contours show water depth. 
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6.2.3 Variables conditioned on Hm0 

The correlation between Hm0 and other variables is presented in Figure 6.20 for 

the 80,000-year simulated storms in J-EVA.  

The conditioned variables are obtained by selecting the 250 simulated events 

that are closest to the annual maxima for each return period, and then finding 

the 2.5%, 50%, and 97.5% quantile of the conditioned variable in each event. 

From this method, the conditioned variables do not necessarily increase 

smoothly with increasing return period, and therefore a fit to the conditioned 

variables was applied to obtain a robust estimation.  

Power or linear functional forms are applied to the range of return periods. 

Here, ‘Y’ denotes the variable conditional on Hm0, while ‘a’ and ‘b’ are fitted 

parameters. 

 

Wave periods (Tp, T02, 
THmax), and current speed 
(CS): 

Y|Hm0 = a∙Hm0
b
 (6.2) 

WLtot: Y|Hm0 = a∙Hm0 + 𝑏 (6.3) 

 

The following tables present the 50 %-tile values of the conditioned variables, 

while 2.5, 50 and 97.5 %-tile values at all analysis points are provided in the 

Excel Data Reports (listed in Table 11.1) attached to this report.  

It is noted that for conditioned variables the directional values can sometimes 

exceed that of omni. This could fx be in case omni waves are dominated by 

wind-sea, while a certain sector is dominated by swell. In this case the swell-

dominated directional sector will higher (conditional) Tp than omni.  
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Tp conditioned on Hm0 

Figure 6.25 shows the extreme Hm0 for each return period against Tp and fit 

based on (6.2), while Table 6.4 provides the 50 %-tiles of Tp|Hm0 at EINS-2. 

 

 

Figure 6.25 Omni Tp conditioned on Hm0, Tp|Hm0 at EINS-2 

 

Table 6.4 Tp conditioned on Hm0, Tp|Hm0 50% at EINS-2 

Peak wave period conditioned on Hm0, Tp|Hm0 [s] 50% 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 13.2 14.7 15.3 16.4 16.7 16.8 17.9 18.7 

0 11.4 13.0 13.6 14.9 15.2 15.4 17.0 18.1 

22.5 10.6 11.5 11.8 12.4 12.6 12.7 13.4 14.2 

45 10.2 10.9 11.1 11.6 11.8 11.8 12.4 12.9 

67.5 8.7 9.5 9.7 10.3 10.4 10.5 11.1 11.6 

90 8.3 9.0 9.2 9.7 9.8 9.9 10.4 10.9 

112.5 8.4 9.1 9.4 9.8 10.0 10.0 10.6 11.1 

135 9.1 9.8 10.1 10.6 10.8 10.9 11.6 12.3 

157.5 9.9 10.8 11.2 11.9 12.1 12.2 13.1 13.9 

180 11.0 11.9 12.3 13.0 13.1 13.2 14.1 15.0 

202.5 11.9 12.7 13.1 13.8 13.9 14.0 14.9 15.6 

225 12.4 13.3 13.6 14.3 14.4 14.5 15.3 16.0 

247.5 12.6 13.8 14.1 14.9 15.0 15.1 15.9 16.6 

270 13.0 14.4 14.9 15.9 16.1 16.2 16.9 17.6 

292.5 13.2 14.6 15.2 16.2 16.5 16.6 17.6 18.4 

315 13.6 15.0 15.6 16.6 16.9 17.0 18.1 18.9 

337.5 13.8 15.3 15.9 17.0 17.3 17.4 18.4 19.2 
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T02 conditioned on Hm0 

Figure 6.26 shows the extreme Hm0 for each return period against T02 and fit 

based on (6.2), while Table 6.5 provides the 50 %-tiles of T02|Hm0 at EINS-2. 

 

 

Figure 6.26 Omni T02 conditioned on Hm0, T02|Hm0 at EINS-2 

 

Table 6.5 T02 conditioned on Hm0, T02|Hm0 50% at EINS-2 

T02 conditioned on Hm0, T02|Hm0 [s] 50% 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 8.9 9.8 10.1 10.7 10.9 10.9 11.6 12.0 

0 7.6 8.6 8.9 9.7 9.9 10.0 10.9 11.5 

22.5 7.1 7.6 7.8 8.2 8.3 8.3 8.8 9.2 

45 6.8 7.2 7.3 7.6 7.7 7.7 8.1 8.3 

67.5 6.1 6.6 6.7 7.1 7.1 7.2 7.5 7.8 

90 5.9 6.4 6.5 6.8 6.9 6.9 7.3 7.5 

112.5 6.0 6.4 6.6 6.9 6.9 7.0 7.3 7.6 

135 6.3 6.7 6.8 7.2 7.2 7.3 7.7 8.0 

157.5 6.7 7.2 7.4 7.8 7.9 7.9 8.4 8.8 

180 7.4 7.9 8.1 8.4 8.5 8.6 9.0 9.5 

202.5 8.0 8.4 8.6 9.0 9.1 9.1 9.6 9.9 

225 8.3 8.8 8.9 9.3 9.4 9.4 9.9 10.2 

247.5 8.5 9.1 9.3 9.7 9.8 9.8 10.2 10.6 

270 8.7 9.4 9.7 10.2 10.3 10.4 10.8 11.1 

292.5 8.9 9.7 10.0 10.6 10.7 10.8 11.4 11.8 

315 9.1 10.0 10.3 11.0 11.1 11.2 11.8 12.3 

337.5 9.3 10.3 10.6 11.3 11.4 11.5 12.1 12.6 
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WLtot conditioned on Hm0 

Figure 6.27 shows the extreme Hm0 for each return period against WLtot and fit 

based on (6.3), while Table 6.6 provides all %-tiles of WLtot|Hm0 at EINS-2. For 

the 2.5%-tile, a negative trend was observed, in which case a mean value is 

applied across all return periods.  

 

 

Figure 6.27 Total WL conditioned on Hm0, WLtot|Hm0 at EINS-2 

 

Table 6.6 Total WL conditioned on Hm0, WLtot|Hm0 at EINS-2 

WLtot conditioned on Hm0, WLtot|Hm0 [m] 

Return Period, TR 

[years] 
2.5%-tile 50%-tile 97.5%-tile 

1 0.1 0.7 1.3 

5 0.1 0.8 1.5 

10 0.1 0.9 1.5 

50 0.1 1.0 1.6 

80 0.1 1.0 1.6 

100 0.1 1.0 1.6 

1,000 0.1 1.1 1.7 

10,000 0.1 1.2 1.8 
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CSres conditioned on Hm0 

Figure 6.28 shows the extreme Hm0 for each return period against CSres and fit 

based on (6.2), while Table 6.7 provides all %-tiles of CSres|Hm0 at EINS-2. 

 

Figure 6.28 Residual CS conditioned on Hm0, CSres|Hm0 at EINS-2 

 

Table 6.7 Residual CS conditioned on Hm0, CSres|Hm0 at EINS-2 

CSres conditioned on Hm0, CSres|Hm0 [m/s] 

Return Period, TR 

[years] 
2.5%-tile 50%-tile 97.5%-tile 

1 0.2 0.4 0.8 

5 0.3 0.5 0.9 

10 0.3 0.5 0.9 

50 0.3 0.6 1.0 

80 0.3 0.6 1.0 

100 0.3 0.6 1.0 

1,000 0.4 0.7 1.0 

10,000 0.4 0.7 1.1 
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CStot conditioned on Hm0 

Figure 6.29 shows the extreme Hm0 for each return period against CStot and fit 

based on (6.2), while Table 6.8 provides all %-tiles of CStot|Hm0 at EINS-2. 

 

Figure 6.29 Total CS conditioned on Hm0, CStot|Hm0 at EINS-2. 

 

Table 6.8 Total CS conditioned on Hm0, CStot|Hm0 at EINS-2. 

CStot conditioned on Hm0, CStot|Hm0 [m/s] 

Return Period, TR 

[years] 
2.5%-tile 50%-tile 97.5%-tile 

1 0.2 0.5 0.8 

5 0.3 0.6 0.9 

10 0.3 0.6 0.9 

50 0.3 0.6 1.0 

80 0.4 0.6 1.0 

100 0.4 0.6 1.0 

1,000 0.4 0.7 1.1 

10,000 0.5 0.7 1.1 

 

  



 

  76 

6.2.4 Extreme maximum wave height, Hmax 

The extreme maximum wave heights, Hmax, were derived based on the 

Glukhovskiy short-term wave heigh distribution (given in Section 1.3 in 

Appendix C: T-EVA – Traditional EVA) that considers the local water depth. 

The choice of the short term distribution is discussed and justified in Section 

6.2.1 of [1]. 

Table 6.9 presents the directional extreme Hmax values. The directional 

extreme values are scaled according to DNV-RP-C205, [3]. The values have 

been truncated to account for wave breaking and limitations in accordance with 

Section 6.2.6. 

 

Table 6.9 Extreme maximum wave height, Hmax, at EINS-2 

Extreme maximum wave height, Hmax [m] 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 14.7 17.2 18.2 20.3 20.8 21.1 23.3 23.4 

0 10.4 12.6 13.4 15.2 15.7 15.9 18.1 20.4 

22.5 9.8 11.7 12.5 14.1 14.5 14.6 16.5 18.3 

45 10.1 11.8 12.4 13.7 14.1 14.3 16.0 17.8 

67.5 9.1 10.7 11.3 12.6 13.0 13.2 14.7 16.3 

90 8.7 10.3 10.9 12.1 12.5 12.7 14.1 15.8 

112.5 9.0 10.5 11.0 12.2 12.5 12.7 14.4 16.1 

135 9.6 11.1 11.6 12.9 13.2 13.4 15.2 17.2 

157.5 10.6 12.2 12.8 14.1 14.4 14.6 16.6 18.9 

180 11.9 13.6 14.2 15.6 16.1 16.3 18.0 20.0 

202.5 13.5 15.1 15.8 17.2 17.6 17.8 19.6 21.7 

225 14.1 15.8 16.5 17.9 18.4 18.6 21.7 22.2 

247.5 14.7 16.6 17.3 18.8 19.2 19.4 22.1 22.8 

270 14.7 17.2 18.2 20.0 20.4 20.7 22.7 22.8 

292.5 14.7 17.2 18.2 20.3 20.8 21.1 23.1 23.4 

315 14.7 17.2 18.2 20.3 20.8 21.1 23.3 23.4 

337.5 14.7 17.2 18.2 20.3 20.8 21.0 23.3 23.4 
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THmax conditioned on Hmax  

Figure 6.30 shows the extreme THm0 for each return period against Hmax and fit 

based on (6.2), while Table 6.10 provides 50 %-tiles of THmax at EINS-2. 

 

 

Figure 6.30 Omni THmax conditioned on Hmax, THmax at EINS-2 

Table 6.10 THmax conditioned on Hmax, THmax at EINS-2 

THmax conditioned on Hmax, THmax [s] 50% 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 11.4 12.5 13.0 13.8 14.1 14.2 15.1 15.1 

0 10.1 11.3 11.7 12.5 12.8 12.9 13.9 14.8 

22.5 9.1 10.0 10.3 10.9 11.1 11.1 11.9 12.5 

45 8.8 9.4 9.7 10.1 10.3 10.3 10.9 11.4 

67.5 7.9 8.5 8.7 9.1 9.3 9.3 9.8 10.2 

90 7.5 8.1 8.3 8.7 8.8 8.9 9.3 9.8 

112.5 7.6 8.1 8.3 8.7 8.8 8.8 9.3 9.7 

135 8.0 8.6 8.8 9.3 9.4 9.5 10.0 10.7 

157.5 8.7 9.4 9.6 10.1 10.3 10.3 11.0 11.8 

180 9.7 10.3 10.5 11.0 11.1 11.2 11.7 12.3 

202.5 10.4 11.0 11.2 11.7 11.8 11.9 12.5 13.1 

225 10.8 11.4 11.6 12.0 12.1 12.2 12.9 13.1 

247.5 11.1 11.8 12.0 12.5 12.6 12.7 13.5 13.7 

270 11.5 12.4 12.7 13.2 13.4 13.4 14.0 14.0 

292.5 11.9 12.8 13.1 13.8 14.0 14.1 14.7 14.8 

315 12.0 13.1 13.5 14.2 14.5 14.6 15.3 15.4 

337.5 12.2 13.3 13.7 14.4 14.6 14.7 15.5 15.6 
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6.2.5 Extreme maximum wave crest, Cmax 

The extreme maximum wave crests, Cmax, were derived based on the Forristall 

short-term wave height distribution (given in Section 1.3 in Appendix C: T-EVA 

– Traditional EVA). The choice of the short-term distribution is discussed and 

justified in Section 6.2.1 of DHI [1]. 

The maximum wave crest is given relative to still water level, Cmax,SWL, and 

relative to mean sea level, Cmax,SWL. The latter, Cmax,MSL, is derived by 

convoluting the short-term distribution with the simultaneous (residual) water 

level. 

The values of Cmax, MSL are provided for the construction completion (2033), 

and for the design lifetime end (2113) respectively. Following Part A, [1], an 

estimated sea level rise (SLR) of 0.8 m was added to the estimate of 2033 

relative to the vertical reference (MSL) of today. 

Table 6.11 presents the directional extreme Cmax,SWL, while Table 6.12 and 

Table 6.13 presents the directional extreme Cmax,MSL for 2033 (construction 

complete) and 2113 (end of lifetime). The directional extreme values are scaled 

according to DNV-RP-C205, [3]. 

The values have been truncated to account for wave breaking in accordance 

with Section 6.2.6. 

 

Table 6.11  Extreme maximum wave crest relative to SWL, Cmax,SWL at  

EINS-2 

Extreme maximum wave crest relative to SWL, Cmax,SWL [mSWL] 

MWD [°N-from] 

Return Period, TR [years] 

1 5 10 50 80 100 1,000 10,000 

Omni 9.7 12.1 13.1 15.3 16.0 16.3 19.2 19.9 

0 6.3 8.0 8.7 10.1 10.6 10.8 13.0 15.4 

22.5 6.0 7.4 7.9 9.2 9.6 9.7 11.4 13.2 

45 6.2 7.4 7.9 9.0 9.3 9.4 10.9 12.5 

67.5 5.5 6.7 7.2 8.2 8.5 8.6 9.9 11.3 

90 5.3 6.4 6.9 7.8 8.1 8.2 9.4 10.9 

112.5 5.5 6.6 7.0 7.9 8.1 8.3 9.7 11.1 

135 5.9 7.0 7.4 8.4 8.6 8.8 10.3 12.0 

157.5 6.6 7.8 8.2 9.3 9.6 9.8 11.5 13.6 

180 7.5 8.9 9.4 10.5 11.0 11.1 12.8 14.8 

202.5 8.7 10.1 10.7 12.0 12.4 12.6 14.4 16.7 

225 9.2 10.7 11.3 12.7 13.2 13.4 15.4 18.0 

247.5 9.7 11.4 12.1 13.7 14.0 14.2 18.8 19.4 

270 9.7 12.1 13.0 14.9 15.4 15.7 19.2 19.4 

292.5 9.7 12.1 13.1 15.3 16.0 16.3 19.2 19.9 

315 9.7 12.1 13.1 15.3 16.0 16.3 19.2 19.9 

337.5 9.7 12.1 13.1 15.3 16.0 16.3 19.2 19.9 
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Table 6.12 Extreme maximum wave crest relative to MSL – in 2033 

(construction complete), at EINS-2 

Cmax,MSL – 2033 
[mMSL] Return Period, TR [years] 

MWD [°N-from] 
1 5 10 50 80 100 1,000 10,000 

Omni 10.3 12.9 13.9 16.3 17.0 17.3 20.3 20.4 

0 6.5 8.4 9.2 10.8 11.4 11.6 14.1 16.3 

22.5 5.9 7.3 7.9 9.2 9.6 9.7 11.4 13.3 

45 6.0 7.2 7.7 8.8 9.1 9.2 10.7 12.4 

67.5 5.2 6.3 6.8 7.8 8.1 8.2 9.5 10.8 

90 5.0 6.1 6.5 7.4 7.8 7.9 9.0 10.5 

112.5 5.2 6.2 6.7 7.6 7.8 8.0 9.3 10.7 

135 5.7 6.8 7.3 8.2 8.5 8.6 10.1 12.0 

157.5 6.6 7.8 8.4 9.5 9.8 10.0 11.7 14.0 

180 7.8 9.2 9.8 11.0 11.4 11.6 13.2 15.2 

202.5 9.1 10.6 11.2 12.6 13.0 13.2 15.0 17.3 

225 9.8 11.3 11.9 13.3 13.9 14.1 16.0 18.7 

247.5 10.3 12.1 12.8 14.4 14.7 15.0 19.2 19.8 

270 10.3 12.9 13.9 15.8 16.3 16.5 19.8 19.9 

292.5 10.3 12.9 13.9 16.3 17.0 17.3 20.1 20.4 

315 10.3 12.9 13.9 16.3 17.0 17.3 20.3 20.4 

337.5 10.3 12.9 13.9 16.3 17.0 17.3 20.3 20.4 

Table 6.13 Extreme maximum wave crest relative to MSL – in 2113 (end of 

lifetime) at EINS-2. 

Cmax,MSL – 2113 
[mMSL] Return Period, TR [years] 

MWD [°N-from] 
1 5 10 50 80 100 1,000 10,000 

Omni 11.1 13.7 14.7 17.1 17.8 18.1 21.1 21.2 

0 7.3 9.2 10.0 11.6 12.2 12.4 14.9 17.1 

22.5 6.7 8.1 8.7 10.0 10.4 10.5 12.2 14.1 

45 6.8 8.0 8.5 9.6 9.9 10.0 11.5 13.2 

67.5 6.0 7.1 7.6 8.6 8.9 9.0 10.3 11.6 

90 5.8 6.9 7.3 8.2 8.6 8.7 9.8 11.3 

112.5 6.0 7.0 7.5 8.4 8.6 8.8 10.1 11.5 

135 6.5 7.6 8.1 9.0 9.3 9.4 10.9 12.8 

157.5 7.4 8.6 9.2 10.3 10.6 10.8 12.5 14.8 

180 8.6 10.0 10.6 11.8 12.2 12.4 14.0 16.0 

202.5 9.9 11.4 12.0 13.4 13.8 14.0 15.8 18.1 

225 10.6 12.1 12.7 14.1 14.7 14.9 16.8 19.5 

247.5 11.1 12.9 13.6 15.2 15.5 15.8 20.0 20.6 

270 11.1 13.7 14.7 16.6 17.1 17.3 20.6 20.7 

292.5 11.1 13.7 14.7 17.1 17.8 18.1 20.9 21.2 

315 11.1 13.7 14.7 17.1 17.8 18.1 21.1 21.2 

337.5 11.1 13.7 14.7 17.1 17.8 18.1 21.1 21.2 

  



 

  80 

6.2.6 Wave breaking and limitations 

The extreme Hmax (Table 6.9) and Cmax (Table 6.11) were derived following the 

Glukhovskiy and the Forristall short-term distributions respectively. The 

extreme distribution of Hm0 (see Figure 6.20) did not indicate any upper limit. 

However, in practice, the highest waves are limited by the wave height to water 

depth ratio or wave steepness (height to length ratio). The water depth and 

wave periods of extreme sea states at EINS are such that shoaling is non-

negligible. This means that the average wave steepness will increase and 

consequently that the probability of wave breaking will increase.  

This section aims to address the occurrence/likelihood of wave breaking and to 

quantify the limiting individual wave height and wave crest conditions. This is 

sought by evaluating the magnitude and range of the individual wave period 

conditioned on Hmax, THmax, and by visiting the below common wave breaking 

criteria, followed by final recommendations on wave breaking and limitations. 

• DNV RP-C205, [3] – Steepness-induced breaking (regular waves) 

• DNV RP-C205, [3] – Depth-induced breaking (shallow water) 

• Fenton, [17, 18] – Stream Function (monochromatic wave on a flat seabed) 

• Paulsen, [19] – Steepness and non-linear crest height to water depth ratio 

 

Individual wave period conditioned on Hmax, THmax 

The individual wave period conditioned on Hmax, THmax, is fundamental for the 

steepness-induced breaking. The period will vary because of varying sea state 

characteristics (variability of Tp given Hm0) but also because of the randomness 

of the sea state itself. The variability of THmax against Hmax is assessed, using 

the following three approaches/datasets, and comparing to DNV RP-C205. 

1. Figure 6.32: Scatter plot of measured THmax vs. Hmax at EINS-

  Island (Mini 1), and fit to values above Hmax,95%. 

2. Figure 6.33: The most probable period, J-EVA (linear new 

  wave, see Section 15.5.1) at EINS-3 (close to 

  EINS Island measurements). 

3. Figure 6.34: Linear simulations of the surface elevation based 

  on modelled spectra and zero-crossing at EINS-3. 

According to Section 3.7.4 in DNV RP-C205, [3], the most probable THmax to be 

used in conjunction with long term extreme wave height Hmax, may be taken as 

given by Eq. (6.4), or alternatively Eq. (6.5). THmax used in conjunction with H100 

should be varied in the range given by Eq. (6.6).  

 𝑇𝐻𝑚𝑎𝑥 = 0.9 ∙ 𝑇𝑝 (6.4) 

 𝑇𝐻𝑚𝑎𝑥 = 𝑎 ∙ 𝐻𝑚𝑎𝑥
𝑏  

where a and b are empirical coefficients. For the southern part of the 

Norwegian Continental Shelf, a = 2.94, and b = 0.5 may be applied. 

(6.5) 

 2.55 ∙ √𝐻100 ≤ 𝑇𝐻𝑚𝑎𝑥 ≤ 3.32 ∙ √𝐻100 

Where H100 is the 100-year individual wave height, Hmax,100yr 
(6.6) 
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The highest measured individual wave was during storm Malik with Hmax of 19 

m and THmax of 14.6 s, see Figure 6.31 (left). The second highest measured 

wave had Hmax of 17 m and THmax of 14.3 s on 2021-12-01, but it is likely an 

erroneous recording, and was removed from the analysis, see Figure 6.31 

(right).  

  

Figure 6.31 Time series of the two highest measured Hmax (and THmax). 

Left: Storm Malik. Right: is Likely an erroneous recording.  

 

The above approaches were evaluated using the 50%-tile Tp|Hm0,100yr = 15.7 s 

and Hmax,100yr = 18.8 m as estimated at EINS-3, the analysis point close to 

EINS Island (shown by orange lines in Figure 6.32 to Figure 6.34).  

The results show a very good agreement between the measured and the most 

probable (J-EVA) THmax,100yr. Eq. (6.4) (DNV by Tp) gives higher THmax,100yr, 

while Eq. (6.5) (DNV by Hmax) gives lower THmax,100yr for EINS-3:  

 

• Eq. (6.4) (DNV by Tp):  THmax = 14.1 s 

• Eq. (6.5) (DNV by Hmax): THmax = 12.7 s  

• Eq. (6.6) (DNV range):  THmax = [11.1 – 14.4] s  

• Figure 6.32 (based on measured fit): THmax = 13.7 s  

• Figure 6.33 (most probable, J-EVA): THmax = 13.3 s  

• Figure 6.34 (from modelled spectra): THmax = 12.9 s  

 

All the central estimates are within the DNV range given by Eq. (6.6), but the 

range of the 2.5 and 97.5%-tiles of the most probable (J-EVA) THmax and the 

2.5 and 97.5%-tiles of the measurements are both larger than the DNV range.  

The DNV range is ±1.7 s (i.e. a factor 3.32/2.94 = 1.13), which agrees roughly 

with the corresponding ~87/13%-tiles of the measurements (Figure 6.32) and 

models (Figure 6.33). Such range (factor of 1.13) of the wave period could be 

an (upper bound) candidate as input to steepness-based breaking criteria. 
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Figure 6.32 Scatter plot of measured THmax vs. Hmax at EINS-Island (Mini 1) 

Orange line: Hmax,100yr = 18.8 m.  

 

 

Figure 6.33 Omni THmax conditioned on Hmax at EINS-3 (from J-EVA) 

Orange line: Hmax,100yr = 18.8 m. 
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Figure 6.34 Scatter plot of modelled THmax vs. Hmax at EINS-3  

Orange line: Hmax,100yr = 18.8 m. 

 

 

DNV RP-C205, [3] – Steepness-induced breaking (regular waves) 

A commonly adopted criterion for steepness-induced wave breaking limit is 

given in Section 3.4.6.1 of DNV RP-C205, [3], see Eq. (6.7) and Figure 6.35. 

This criterion is applicable to regular waves on a plane seabed. 

However, the extreme waves at EINS are not regular, and it is well known that 

irregular and spread (short-crested) sea states can support higher waves; 

hence such a method should only be used with adequate mitigation measures. 

 
𝐻𝑏

𝜆
= 0.142 ∙ tanh

2𝜋𝑑

𝜆
 (6.7) 

Where λ is the wavelength corresponding to water depth d. In deep water, the 

breaking wave limit corresponds to a maximum steepness of Smax = Hb/λ = 1/7. 

 

DNV RP-C205, [3] – Depth-induced breaking (shallow water) 

A common criterion for depth-induced wave breaking limit is given in Section 

3.4.6.2 of DNV RP-C205, [3], and Section B4 in IEC-61400-3-1, [6], see Eq. 

(6.8) and Figure 6.35. This criterion is applicable in shallow water (d < 1/20 λ). 

However, the water depths at EINS are not shallow according to the common 

definition of d < 1/20 λ, albeit the extreme waves will certainly ‘feel’ the seabed; 

hence such method should only be used for reference at EINS.  

 𝐻𝑚𝑎𝑥,𝑙𝑖𝑚 = 0.78 ∙ d (6.8) 

A (potentially cautious) approach would be to use the 97.5%-tile of the 

conditioned water level to Hm0, WLtot|Hm0,97.5%, added to the water depth, d.  

The wave crest in shallow water can be capped using the same criterion by 

anticipating a ratio of 0.85 between the wave crest and wave height (based on 

stream function, see Table 6.14).  
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Fenton, [17, 18] – Stream Function (monochromatic wave on a flat seabed) 

In this section, Fenton’s stream function theory was applied to quantify the 

limiting wave height (Hm), and wave crest (Cm), of a monochromatic wave given 

the total water depth (d) and the wavelength (λ) (or wave period), [17, 18], see 

Eq. (6.9). Using stream function theory means that Cm and Hm occur in the 

same individual wave, which is not necessarily the case in real sea states. 

 

(6.9) 

Figure 6.35 shows common limiting wave heights of regular wave theory, along 

with that of stream function; the figure is adopted from IEC-61400-3-1, [6]. 

 

Figure 6.35 Limiting wave heights of regular wave theory; from [6] 
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The water depth is taken as the mean water depth plus the 97.5%-tile of the 

total water level conditional on Hm0 (WLtot|Hm0,97.5%), and the wave period is 

taken as the 97.5%-tile wave period conditional on Hmax (THmax,97.5%). These 

inputs are conservative in the sense that lower values (shallower water or 

shorter wave period) would lead to lower limiting wave height. Figure 6.36 

shows the limiting (10.000-yr) stream function wave at EINS-2.  

 

 

Figure 6.36 Limiting (10.000-yr) stream function wave at EINS-2 (analysis 

point with highest Hmax). 

 

Table 6.14 summarises the limiting (10.000-yr) wave height (𝐻𝑚) and wave 

crest (𝐶𝑚) according to stream function at EINS-2 using the upper bound 

WLtot|Hm0,97.5%r and THmax,97.5%.  

At EINS, the stream function suggests a limiting wave height and wave crest in 

between the estimated 100 and 1.000-yr Hmax and Cmax values. This means 

that according to stream function theory, the estimated 1,000-yr Hmax and Cmax 

cannot exist, and it can be argued that the Hmax and Cmax values for this and 

higher return periods may be reduced.  

However, it is noted that while stream function can represent very non-linear 

(steep) waves, it does not account for directional spreading, opposing current 

or uneven wave shape (the wave front being steeper than the back of the 

wave). Directional spreading can lead to higher waves (compared to 

unidirectional waves), and thus a stream function wave cannot be considered 

an ultimate upper limit. Nevertheless, it is very rare that those values would be 

exceeded, considering the rather conservative input of the 97.5%-tile 

conditional water level and wave period, 

In practical engineering applications, directional spreading is sometimes 

compensated for by the use of a ‘directional spreading factor’ (to compensate 

for not all energy of the wave spectrum travelling in the same direction).  

Table 6.14 Limiting wave and crest of stream function conditioned on 97.5%-tile – 10,000-year 

Name 
d 
[mMSL] 

WLtot|Hm0,97.5

%  

[mMSL] 

THmax,97.5%  

[s] 
Hmax,Glukhoskiy  

[m] 
Hm  

[m] 
Cmax,Forristall 

[mSWL] 
Cm 

[mSWL] 

EINS-1 26.6 1.9 20.5 22.2 20.5 17.8 17.3 

EINS-2 29.1 1.8 21.0 24.1 22.2 19.3 18.7 

EINS-3 28.9 1.8 18.2 22.9 21.6 18.2 17.7 

EINS-4 30.1 1.9 18.9 24.4 22.5 20.0 18.4 

EINS-5 29.8 2.1 20.3 24.9 22.8 19.9 19.1 
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Paulsen, [19] – Steepness and non-linear crest height to water depth ratio 

An alternative method of estimating the breaking (probability) is given by 

Paulsen et.al., [19]. They quantify the probability that a random wave in a sea 

state is breaking via the sea state steepness and the non-linear crest height to 

water depth ratio.  

The sea state steepness is calculated based on the linear dispersion relation, 

𝑇01, and 𝐻𝑚0 as 𝑅 = 𝑘01𝐻𝑚0, and the wave is breaking when the non-linear 

crest height exceeds a limit 𝛼 given by Eq. (6.10). 

 𝛼 = min(
𝛽0(1+

1

2
𝛽0)

𝑘01
, 𝛼0ℎ) 

 𝛽0 ∈ [0.3; 0.5] 

 𝛼0 = 0.4 

 ℎ is the water depth, including tide and surge 

(6.10) 

Figure 6.37 compares this non-breaking wave crest criterion to the extreme 

wave crests at a location in the North Sea of similar water depth to EINS (~26 

mMSL). The figure shows the Forristall crest to still water level, 𝜂, against the 

significant wave height, 𝐻𝑚0 (grey line) for return periods of 1 to 10,000 years.  

This is compared to the depth-limited crest (0.4 × ℎ), Eq. (6.10), at which all 

crests are assumed to break (blue line). The slight increase in increasing 𝐻𝑚0 
is caused by the increase in surge for the increasing return period. It is 

observed that waves with crests above ~11 m are breaking based on this 

criterion. 

The green and orange lines show the limits of the steepness-based criterion. 

The wave crests lie in between these limits but approach the upper limit for an 

increasing return period. This is because the steepness of the sea state is 

increasing for an increasing return period. This assessment supports that 

breaking is to be expected at the EINS site.  
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Figure 6.37 Maximum non-breaking crest height according to Paulsen et.al., 

[19], compared to the wave crests at a location in the North Sea 

Recommendations on wave breaking  

All the wave breaking, limitation and probability approaches described above 

are prone to some general simplifications and somewhat crude assumptions 

about individual waves in extreme sea states. However, there is consensus 

that the higher waves will break, and as such it is recommended that wave 

breaking, and related loads, are accounted for in the design of EINS.  

Concerning breaker type, we do not recommend following the procedure 

outlined in e.g. IEC-61400-3-1 Annex B, [6]. This approach classifies wave 

breaking type as function of seabed slope and wave steepness. For most 

offshore sites in the North Sea, this will classify breaking waves as spilling, and 

no additional load to that of stream function theory would be accounted for. 

 

Recommendations on wave limitations 

The comparison of measured and modelled relations between Hmax and THmax 

demonstrated a very good agreement, and it showed that the estimated 

individual wave periods at EINS are in line with the local measurements.  

Several of the wave limitation approaches suggest that the extreme sea states 

are prone to steepness- or depth-induced wave breaking. The former is 

dependent on which quantile of the wave period one considers. The DNV 

range for the 100-year return period, Eq. (6.6), corresponds to a factor of 1.13 

times the central value of THmax, which is thus a candidate for such range. 

In conclusion, it is recommended to use the DNV steepness criteria, Eq. (6.7), 

with 1.13 times THmax,50%, and WLHm0,50% as input, to limit Hmax. And to limit Cmax 

accordingly using a ratio of 0.85 between the wave crest and the wave height.  

Table 6.15 presents the recommended limits to Hmax and Cmax for 10.000 years. 

The limiting Hmax is higher than those of the stream function, but slightly lower 



 

  88 

than those of the DNV shallow water criteria, Eq. (6.8) for 10,000-years. The 

limiting values are in between the 100- and 1,000-year return period values. 

It is noted that neither regular wave theory nor stream function accounts for 

directional spreading etc., which can lead to higher waves. However, using the 

steepness criteria with an upper bound THmax is considered an optimised and 

pragmatic, but still safe, approach for the individual extreme waves at EINS.  

 

Table 6.15 Recommended limits to Hmax and Cmax based on DNV steepness criteria, Eq. (6.7), with 

upper bound (UB) as 1.13 times the 50%-tile THmax, and the 50%-tile WL|Hm0 – 10,000-year 

Using a ratio of 0.85 between the Cmax and Hmax (based on stream function, see Table 6.14). 

Name 
d 
[mMSL] 

WLHm0,50%  

[mMSL] 

1.13 × 

THmax,50%  

[s] 

Hmax,Glukhovski

y 

[m] 

Hb,Steepness,UB 

[m] 
Hb,Shallow,97.5% 

[m] (=0.78 x WL) 
Cb,Steepness,UB 

[m] (=0.85 x Hb) 

EINS-1 26.6 1.2 17.9 22.2 22.0 22.2 18.7 

EINS-2 29.1 1.2 17.5 24.1 23.6 24.1 20.1 

EINS-3 28.9 1.1 16.4 22.9 22.9 23.9 19.5 

EINS-4 30.1 1.2 17.2 24.4 24.1 24.9 20.5 

EINS-5 29.8 1.2 17.9 24.9 24.2 24.9 20.6 
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7 Other Atmospheric Conditions 

This section presents analyses of other atmospheric conditions than 

wind. 

Other atmospheric conditions concern rainfall, air temperature, humidity, solar 

radiation, lightning, and visibility.  

7.1 Rainfall 

7.1.1 Data 

Rainfall intensity-duration-frequency (IDF) curves were estimated based on the 

ERA5 1-hour resolution time series resampled over different durations (2, 3, 6, 

12 and 24 hours) using a moving average procedure. The rainfall analysis was 

based on the six time series, referred to as 1h, 2h, 3h, 6h, 12h and 24h rainfall 

depths (measured in [mm]) and rainfall intensities (measured in [mm/h]), cf. 

Section 7.1 of Part A, [1]. 

7.1.2 Methodology 

The rainfall time series data were analysed to provide estimates of rainfall 

intensities of 10 min duration for return periods of 1, 5, 10, 50, 80 and 100 

years. In addition, Chicago design storms (CDS) were derived for return 

periods of 5 and 100 years. 

The methodology applied includes the following steps: 

1. Estimation of extreme rainfall depths for the six (6) durations based on the 

ERA5 rainfall time series data. 

2. Area correction of the extreme rainfall statistics.  

3. Estimation of IDF curves covering durations from 10 min to 24 hours. 

4. Determination of CDS based on the estimated IDF curves.  

For estimation of extreme rainfall statistics, a partial durations series approach 

was applied following the methodology used for estimation of the regional 

extreme rainfall model in Denmark [20, 21]. The extreme value series was 

defined by extracting the most extreme rainfall events of the 44-year record, 

corresponding to 3 events on average per year (i.e., the 132 largest events on 

record). A generalised Pareto distribution was fitted to the extreme value data 

series. The generalised Pareto distribution includes the exponential distribution 

as a special case, corresponding to a shape parameter equal to zero. 

The extreme rainfall statistics estimated from the ERA5 data represent a 

spatial scale corresponding to the ERA5 grid cell size, i.e., approximately 

900 km2. Since rainfall is not uniform, especially for extreme events, the 

extreme rainfall statistics over a large area is smaller than the statistics over a 

small area. Areal reduction factors (ARF) have been introduced for scaling 

extreme rainfall statistics from a point to an area. The ARF is defined as: 

𝐴𝑅𝐹 =
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑣𝑒𝑟 𝑎𝑛 𝑎𝑟𝑒𝑎

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑎 𝑝𝑜𝑖𝑛𝑡
 (7.1) 



 

  90 

The ARF depends on the rainfall duration with smaller ARFs for smaller 

durations. To estimate extreme rainfall statistics representative for the energy 

island the rainfall intensities were corrected by dividing the statistics from the 

ERA5 time series with ARFs. 

ARFs have been estimated for Denmark but focus on design rainfall estimates 

for urban drainage systems with areas less than 50-100 km2, [22, 23].[22, 23]. 

For correction of ERA5 based rainfall statistics, instead ARFs derived for the 

UK published in the Flood Studies Report [24] were applied. ARFs from the UK 

Flood Studies Report applied to the different durations are shown in Table 7.1. 

Table 7.1 ARFs applied for correction of estimated extreme value 

statistics based on ERA5 rainfall data 

Duration [h] ARF 

1 0.62 

2 0.73 

3 0.78 

6 0.83 

12 0.85 

24 0.89 

To extrapolate extreme rainfall statistics below 1 hour, an IDF curve was 

estimated using the same IDF model as applied in the Danish design rainfall 

guideline [25]: 

𝑖𝑇(𝑑) = 𝛼(𝑑 + 𝜃)
−𝜈 (7.2) 

where 𝑖𝑇(𝑑) is the rainfall intensity for duration d and return period T. The 

parameters ,  and  are estimated from the rainfall statistics for durations 1h-

24h. 

The CDS was originally proposed by Keifer and Chu (1957) [26]. Here the 

discrete version of the CDS as used in the Danish design rainfall guideline [25] 

was applied. The CDS is determined by defining a storm duration and an 

asymmetry coefficient that determines the shape of the storm. Two different 

shapes of the CDS were applied, respectively, a symmetric storm 

(corresponding to an asymmetry coefficient of 0.5) and a storm with an 

asymmetry coefficient that describes the most extreme rainfall events on 

record.  
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7.1.3 Results 

The choice of extreme value distribution should balance model bias and 

sampling uncertainty of the estimated quantiles. Distributions with more 

parameters will, in general, decrease model error but at the expense of an 

increase in sampling uncertainty. Studies have shown that the 1-parameter 

exponential distribution is preferable for moderately long-tailed distributions 

where the slightly better fit of the 2-parameter generalised Pareto distribution 

cannot be justified due to its larger sampling uncertainty, cf. [27].  

 

 

Figure 7.1 Estimated extreme value distribution (full red line) and 

corresponding 95% confidence interval (dotted red line) 

compared to ERA5 rainfall depths (black dots) for 1h, 6h and 

24h durations 
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Analysis of the partial duration series of rainfall depths shows that for all 6 

durations the exponential distribution is preferable compared to the generalised 

Pareto distribution considering the balance between model error and sampling 

uncertainty. In Figure 7.1 the estimated distributions are compared to the ERA5 

extreme rainfall depths for the 1h, 6h and 24h durations. Estimated rainfall 

depths and associated sampling uncertainties in terms of standard deviation 

are shown in Table 7.2 for different return periods. 

Table 7.2 Estimated rainfall depths and standard deviations for different 

durations and return periods 

 Duration = 1h Duration = 2h Duration = 3h 

Return period 
[years] 

Depth 
[mm] 

St. dev. 
[mm] 

Depth 
[mm] 

St. dev. 
[mm] 

Depth 
[mm] 

St. dev. 
[mm] 

1 4.41 0.09 7.81 0.15 10.59 0.21 

5 5.91 0.22 10.45 0.38 14.15 0.51 

10 6.56 0.27 11.59 0.48 15.68 0.64 

50 8.06 0.40 14.23 0.70 19.25 0.95 

80 8.50 0.44 15.00 0.77 20.29 1.04 

100 8.71 0.46 15.37 0.80 20.78 1.08 

 

 Duration = 6h Duration = 12h Duration = 24h 

Return period 
[years] 

Depth 
[mm] 

St. dev. 
[mm] 

Depth 
[mm] 

St. dev. 
[mm] 

Depth 
[mm] 

St. dev. 
[mm] 

1 16.03 0.34 21.62 0.51 27.09 0.66 

5 21.86 0.84 30.34 1.25 38.36 1.62 

10 24.38 1.05 34.10 1.58 43.21 2.04 

50 30.21 1.55 42.82 2.32 54.48 3.00 

80 31.92 1.70 45.36 2.54 57.77 3.28 

100 32.73 1.77 46.57 2.64 59.33 3.41 

 

The IDF model Eq. (7.2) provides a good fit to the area-corrected rainfall 

intensities for the six return periods considered. In Figure 7.2 the ERA5 and 

area corrected estimates are shown together with the estimated IDF curve for 

return periods of 5 and 100 years. It should be noted that it is not possible to 

validate the extrapolation of the IDF curve to 10 min rainfall intensities. 

However, the applied IDF model has been shown to provide a good fit to 

extreme rainfall intensities in Denmark in the range 1 min – 48 hours duration 

[25]. Estimated parameters of the IDF curve are shown in Table 7.3. Estimated 

10 min rainfall intensities for different return periods are shown in Table 7.4. 
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Figure 7.2 ERA5 and area corrected estimates of rainfall intensities for 1h, 

2h, 3h, 6h, 12h and 24h durations and estimated IDF curve for 

return periods of 5 and 100 years 
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Table 7.3 Estimated IDF parameters for 5 and 100-year return periods 

IDF parameter T=5 years T=100 years 

𝛼 [mm/h] 313 362 

𝜃 [min] 91.0 82.2 

𝜐 [-] 0.701 0.661 

 

Table 7.4 Estimated 10 min rainfall intensities for different return periods 

Return period [years] Intensity [mm/h] 

1 9.20 

5 12.3 

10 13.7 

50 16.7 

80 17.8 

100 18.2 

 

The most extreme rainfall events on record were analysed to determine an 

asymmetry coefficient for the CDS that best describes the extreme rainfalls at 

the location. In Figure 7.3 are shown the 3 most extreme rainfall events from 

the ERA5 record normalised with respect to the maximum intensity and 

duration of the events. The most extreme events have shapes where the peak 

intensity occurs in the last 20-40% part of the event. The average asymmetry 

coefficient of the three events is 0.73. 

For comparison, the most extreme observed event from EINS-North and EINS-

South during the 6-month measurement campaign (see Part A) were analysed. 

The most extreme event occurred on 01-12-2021 with return periods of 

intensities ranging between 1 and 3 years at EINS-North and 0.33-2 years at 

EINS-South for durations between 1 and 12 hours. No other events above the 

0.33 return period threshold were observed in the 6-month period. 

The two observed events normalised with respect to the maximum intensity 

and duration of the events are shown in Figure 7.4. Note that the time series 

have a temporal resolution of 10 min as compared to the 1-hour resolution of 

ERA5. The event at EINS-North shows the same intensity characteristics as 

the ERA5 events and has an asymmetry coefficient of 0.75. The event at EINS-

South does not have a well-defined single peak. 

Based on the above results it is concluded that an asymmetry coefficient of 

0.75 best represents the extreme rainfalls. 
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Figure 7.3 Selected extreme ERA5 rainfall events normalised with respect 

to maximum intensity and duration. The black line is the 

average asymmetry coefficient. 

 

 

Figure 7.4 Most extreme events at EINS-North and EINS-South normalised 

with respect to maximum intensity and duration. 
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7.2 Air temperature, humidity, and solar radiation 

Annual and monthly statistics of modelled air temperature at 2 m above sea 

level (asl), relative humidity and downward solar radiation, based on CFSR, cf. 

Section 7.2 of Part A, [1], at analysis point EINS-1 (shallowest) are illustrated in 

Figure 7.5. The results are summarised in Table 7.5 to Table 7.7.  

There is a clear seasonal variation for all three variables. Air temperature, 

relative humidity and solar radiation are larger during the summer months and 

lower during the winter months. There is also a clear delay of around ~1 month 

between highest solar radiation and, air temperature and relative humidity.  

 

 

 

 

Figure 7.5 Monthly statistics of air temperature at 2 m asl (top), relative 

humidity (centre), and downward solar radiation (bottom) at 

EINS-1 (shallowest) 
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Table 7.5 Annual and monthly statistics for air temperature at 2 m asl at 

EINS-1 (shallowest) based on CFSR (1979-01-01 – 2022-10-01) 

Air temperature at 2 m asl at EINS-1 (shallowest) [°C] 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 383,496 9.7 -8.8 23.4 4.7 

M
o

n
th

ly
 

Jan. 32,735 5.1 -8.8 11.7 2.8 

Feb. 29,832 4.2 -7.5 9.9 2.7 

Mar. 32,736 4.8 -4.0 10.5 2.1 

Apr. 31,680 6.6 -0.2 14.7 1.8 

May 32,736 9.6 3.3 18.4 2.0 

Jun. 31,680 12.7 7.3 20.5 1.9 

Jul. 32,736 15.2 10.0 23.3 1.8 

Aug. 32,736 16.2 10.8 23.4 1.8 

Sep. 31,680 14.6 8.9 21.0 1.7 

Oct. 31,993 11.9 4.6 17.1 2.0 

Nov. 30,960 8.9 -1.2 16.0 2.4 

Dec. 31,992 6.7 -3.3 13.4 2.6 

 

Table 7.6 Annual and monthly statistics for relative humidity at EINS-1 

(shallowest) based on CFSR (1979-01-01 – 2022-10-01) 

Relative humidity at EINS-1 (shallowest) [%] 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 383,496 81.0 36.8 100.0 8.3 

M
o

n
th

ly
 

Jan. 32,735 80.3 42.3 98.9 8.6 

Feb. 29,832 80.8 41.4 97.5 8.7 

Mar. 32,736 81.1 39.3 98.2 9.3 

Apr. 31,680 81.6 43.4 100.0 9.5 

May 32,736 82.3 51.2 99.5 8.5 

Jun. 31,680 83.1 56.7 99.5 7.1 

Jul. 32,736 83.4 59.8 99.2 6.5 

Aug. 32,736 81.7 58.4 99.6 6.7 

Sep. 31,680 80.2 49.5 98.5 7.2 

Oct. 31,993 79.1 40.2 97.0 8.1 

Nov. 30,960 79.0 36.8 96.7 8.5 

Dec. 31,992 79.2 37.6 96.9 9.0 
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Table 7.7 Annual and monthly statistics for downward solar radiation at 

EINS-1 (shallowest) based on CFSR (1979-01-01 – 2022-10-01) 

Downward solar radiation at EINS-1 (shallowest) [W/m2] 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 383,496 130.6 0.0 874.1 203.8 

M
o

n
th

ly
 

Jan. 32,735 21.1 0.0 257.7 38.6 

Feb. 29,832 50.0 0.0 435.6 82.1 

Mar. 32,736 106.1 0.0 642.4 150.1 

Apr. 31,680 186.7 0.0 776.3 224.8 

May 32,736 250.1 0.0 858.6 267.9 

Jun. 31,680 266.1 0.0 874.1 274.5 

Jul. 32,736 250.8 0.0 864.5 265.2 

Aug. 32,736 200.1 0.0 797.0 232.1 

Sep. 31,680 125.0 0.0 658.8 165.4 

Oct. 31,993 61.1 0.0 483.4 93.0 

Nov. 30,960 24.7 0.0 287.4 43.2 

Dec. 31,992 13.9 0.0 156.4 24.9 

7.3 Lightning 

Lightning data was obtained from the LIS/OTD Gridded Climatology dataset 

[28] from NASA’s Global Hydrology Resource Center (GHRC), cf. Section 7.4 

of Part A, [1].  Table 7.8 summarises the statistics of the HRFC (High 

Resolution Full Climatology), HRMC (High Resolution Monthly Climatology) 

and LRMTS (Low Resolution Monthly Time Series) datasets for the whole 

EINS OWF. Figure 7.6 and Figure 7.7 show the monthly and yearly variation of 

flash rates, based on the HRMC and LRMTS datasets, respectively. It should 

be noted that both HRMC and LRMTS contain extensive smoothing (see [29] 

for further results).It should be noted that both HRMC and LRMTS contain 

extensive smoothing (see [29] for further results). Therefore, the values are 

different from the HRFC dataset (discussed in the paragraph above). The 

results from HRMC and LRMTS presented here are only shown to demonstrate 

the monthly and yearly variations, therefore, it is recommended to use the 

HRFC data set. Based on the HRFC data set the mean flash rate at the EINS 

OWF is 0.285 fl/(km2 yr), i.e. 7.81e-4 fl/(km2 day). As it can be seen from the 

figures, the flash rate in June and September is, on average, higher than in 

other months. 

 

 

 

 

 

 



 

  99 

Table 7.8 Statistics of flash rates at EINS 

HRFC dataset: Mean annual flash rate. HRMC: Mean flash rate in 

middle of each month, with monthly smoothing. LRMTS: Monthly 

time series of flash rate, with smoothing.  

Data set Units Grid [°] Max  Min Mean 

HRFC fl/(km2·year) 0.5 --- --- 0.285 

HRMC fl/(km2·day) 0.5 0.004 0.0 0.001 

LRMTS fl/(km2·day) 2.5 0.005 0.0 0.002 

 

Figure 7.6 Monthly variation of flash rate at EINS area based on HRMC 

data for the period July 1995 to February 2000 

Mean flash rate in middle of each month, with monthly smoothing 

 

Figure 7.7 Combined monthly time series of flash rates at EINS based on 

LRMTS data for the period July 1995 to February 2000 

Monthly time series of flash rate (weighted more toward LIS than 

other products) 
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7.4 Visibility 

The visibility was derived from the air temperature at 2m height above sea 

surface, T2m, and the relative humidity, RH, from CFSR, cf. Section 7.4 of Part 

A, [1], following the method described in [30], see (7.3). The dew point 

temperature, Tdp, was approximated using the Magnus formulae3. The visibility 

was capped at 50 km. 

𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 [km] = 1.609×6000×
𝑇2𝑚 − 𝑇𝑑𝑝

𝑅𝐻1.75
 (7.3) 

Figure 7.8 shows time series of T2m, RH and Visibility, and Figure 7.9 presents 

the probability of visibility at EINS-2. The visibility is most frequently between 4 

and 20 km, with a 50%-tile of 12.8 km. 

 

Figure 7.8 Time series of T2m, RH and Visibility at EINS-2 

 

 
3 https://en.wikipedia.org/wiki/Dew_point  

https://en.wikipedia.org/wiki/Dew_point
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Figure 7.9 Probability of visibility at EINS-2 
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8 Other Oceanographic Conditions 

This section presents analyses of other oceanographic conditions. 

Other oceanographic conditions concern water temperature, salinity, and 

density, and marine growth. 

8.1 Water temperature, salinity, and density 

Information on the properties of seawater (temperature and salinity) was 

obtained from the HDUKNS3D model described in Section 5.4 of Part A, [1]. Time 

series of seawater temperature and seawater salinity were extracted for the 

surface and near-seabed layer at four (4) locations: EINS-1 (shallowest), EINS-

3 (max CStot), EINS-Island (Mini 2), and EINS-5 (South). The data cover a 10-

year period (2013 to 2022) with a temporal resolution of 1-hour. Results of the 

analysis are presented only at the EINS-South location, where model outputs 

were validated. Results at the other stations are not produced since the 

variation in water temperature, salinity, and density across the site is limited.  

 

Seawater temperature 

Figure 8.1 presents the monthly statistics (mean, minimum, maximum, and 

standard deviation) of seawater temperature near the surface and near the 

seabed temperature at EINS-South. The statistics are summarised in for Table 

8.1.  

The seasonal variation in seawater temperature is clear at the surface with 

largest temperatures occurring in summer and early autumn (June to 

September) and the lowest temperatures during the winter and early spring 

(January to March). The monthly mean seawater temperatures at the surface 

are higher than those at the seabed for the entire year. The seasonal variation 

at the seabed is also clear but less pronounced. The highest temperatures 

occur during autumn and the lowest in spring, showing the delay in 

temperature changes over the depth. 
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Figure 8.1 Monthly statistics of surface (top panel) and bottom (bottom panel) seawater 

temperature at EINS-South 

 

  



 

  104 

 

Table 8.1 Annual and monthly statistics for seawater temperature near 

the surface and near the seabed at EINS-South based on 

HDUKNS3D (2013-01-01 to 2023-01-01) 

Near-surface and near-seabed data is extracted from top and bottom 

layers of HDUKNS3D 

Seawater temperature at EINS-South [°C] – Near-surface 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 87,649 12.0 2.6 21.9 4.3 

M
o

n
th

ly
 

Jan. 7,441 8.9 6.2 11.2 1.0 

Feb. 6,768 7.0 4.5 9.2 1.0 

Mar. 7,440 6.2 2.6 8.0 1.1 

Apr. 7,200 6.9 3.9 9.8 1.1 

May 7,440 9.3 4.6 15.3 1.7 

Jun. 7,200 13.5 8.7 18.7 2.0 

Jul. 7,440 16.4 12.8 21.8 1.7 

Aug. 7,440 18.0 15.0 21.9 1.3 

Sep. 7,200 16.9 14.1 19.6 1.1 

Oct. 7,440 15.4 12.6 17.7 1.1 

Nov. 7,200 13.9 10.5 16.1 1.0 

Dec. 7,440 11.6 9.4 14.0 0.9 

Seawater temperature at EINS-South [°C] - Near-seabed 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 87,649 10.3 2.7 17.7 3.4 

M
o

n
th

ly
 

Jan. 7,441 8.9 6.2 11.3 1.0 

Feb. 6,768 7.1 4.6 9.2 1.0 

Mar. 7,440 6.2 2.7 8.0 1.1 

Apr. 7,200 6.6 4.0 7.9 0.9 

May 7,440 7.4 4.6 9.4 1.0 

Jun. 7,200 8.4 6.0 10.8 1.1 

Jul. 7,440 10.2 6.5 13.1 1.5 

Aug. 7,440 12.6 7.6 16.1 1.9 

Sep. 7,200 15.0 11.0 17.7 1.9 

Oct. 7,440 15.3 11.7 17.7 1.2 

Nov. 7,200 14.0 10.6 16.1 1.0 

Dec. 7,440 11.7 9.4 14.1 0.9 
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Seawater salinity 

Figure 8.2 presents the monthly statistics (mean, minimum, maximum, and 

standard deviation) of seawater salinity near the surface and near the seabed 

salinity at EINS-South. The statistics are summarised in Table 8.2.  

The seasonal variation in seawater salinity is clear at the surface. The highest 

and mean salinity values are almost constant during the whole year, while the 

lowest salinity values vary considerably during the spring and summer months. 

During the first month of spring, minimum salinity values at the surface drop to 

a minimum in May, where then minimum salinity values increase slowly until 

November. There is little seasonal variation near the seabed.  

 

 

 

Figure 8.2 Monthly statistics of surface (top panel) and bottom (bottom panel) seawater salinity at 

EINS-South 
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Table 8.2 Annual and monthly statistics for seawater salinity near the 

surface and near the seabed at EINS-South based on HDUKNS3D 

(2013-01-01 to 2023-01-01) 

Near-surface and near-seabed data is extracted from top and bottom 

layers of HDUKNS3D 

Seawater salinity at EINS-South [PSS-78] - Near-surface 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 87,649 34.4 30.5 35.1 0.4 

M
o

n
th

ly
 

Jan. 7,441 34.6 34.1 35.1 0.2 

Feb. 6,768 34.5 34.1 34.9 0.1 

Mar. 7,440 34.6 34.1 35.1 0.2 

Apr. 7,200 34.6 33.4 35.0 0.3 

May 7,440 34.3 30.5 34.9 0.8 

Jun. 7,200 34.3 31.7 34.8 0.5 

Jul. 7,440 34.1 31.3 34.9 0.7 

Aug. 7,440 34.5 32.5 34.9 0.3 

Sep. 7,200 34.4 32.4 34.9 0.5 

Oct. 7,440 34.5 33.6 34.9 0.2 

Nov. 7,200 34.5 34.1 35.0 0.2 

Dec. 7,440 34.5 34.0 35.0 0.2 

Seawater salinity at EINS-South [PSS-78] - Near-seabed 

Statistical 
№ of data 

points 
Mean Min. Max. STD. 

Annual 87,649 34.5 33.8 35.1 0.2 

M
o

n
th

ly
 

Jan. 7,441 34.6 34.1 35.1 0.2 

Feb. 6,768 34.5 34.1 34.9 0.1 

Mar. 7,440 34.6 34.2 35.1 0.2 

Apr. 7,200 34.7 34.3 35.0 0.2 

May 7,440 34.6 34.2 35.0 0.2 

Jun. 7,200 34.5 34.0 34.9 0.2 

Jul. 7,440 34.4 34.0 34.8 0.2 

Aug. 7,440 34.3 33.8 34.8 0.2 

Sep. 7,200 34.4 33.8 34.9 0.2 

Oct. 7,440 34.5 34.0 35.0 0.2 

Nov. 7,200 34.5 34.1 35.0 0.2 

Dec. 7,440 34.5 34.0 35.0 0.2 
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Seawater density 

The density of seawater was calculated from the seawater temperature and 

salinity from the HDUKNS3D model using the international one-atmosphere 

equation of the state of seawater derived by Millero, F.J. & Poisson, A. [31]. 

[31].  

Figure 8.3 presents the monthly statistics (mean, minimum, maximum, and 

standard deviation) of near sea surface and near-seabed water density at the 

EINS-South location. The statistics are summarised in Table 8.3.  

The seasonal variation in seawater density is clear at the surface with the 

largest density occurring in winter (December to March) and the lowest density 

seen during spring and summer (April to September). There is little seasonal 

variation in seawater density at the seafloor, but the lowest density levels occur 

during September to November, showing the delay in density changes over the 

depth, i.e., the variations follow roughly the combined pattern of temperature 

and salinity. 

 

 

 

Figure 8.3 Monthly statistics of surface (top panel) and bottom (bottom panel) seawater density at 

EINS-South 
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Table 8.3 Annual and monthly statistics for seawater density at EINS-

South based on HDUKNS3D (2013-01-01 to 2023-01-01) 

Near-surface and near-seabed data is extracted from top and bottom 

layers of HDUKNS3D. 

Seawater density at EINS-South [kg/m3] - Near-surface 

Statistical 
№ of data 
points 

Mean Min. Max. STD. 

Annual 87,649 1025.5 1022.2 1027.0 0.9 
M

o
n

th
ly

 

Jan. 7,441 1026.2 1025.7 1026.7 0.2 

Feb. 6,768 1026.5 1025.9 1027.0 0.2 

Mar. 7,440 1026.6 1026.2 1027.0 0.2 

Apr. 7,200 1026.5 1025.3 1026.9 0.3 

May 7,440 1025.9 1022.8 1026.8 0.7 

Jun. 7,200 1025.2 1022.6 1026.2 0.6 

Jul. 7,440 1024.4 1022.2 1025.6 0.8 

Aug. 7,440 1024.3 1022.8 1025.1 0.5 

Sep. 7,200 1024.5 1022.9 1025.4 0.5 

Oct. 7,440 1025.0 1024.1 1025.9 0.3 

Nov. 7,200 1025.3 1024.6 1026.3 0.3 

Dec. 7,440 1025.7 1025.1 1026.4 0.3 

Seawater density at EINS-South [kg/m3] - Near-seabed 

Statistical 
№ of data 
points 

Mean Min. Max. STD. 

Annual 87,649 1026.0 1024.3 1027.0 0.6 

M
o

n
th

ly
 

Jan. 7,441 1026.2 1025.7 1026.8 0.2 

Feb. 6,768 1026.5 1025.9 1026.9 0.2 

Mar. 7,440 1026.7 1026.2 1027.0 0.2 

Apr. 7,200 1026.7 1026.3 1027.0 0.1 

May 7,440 1026.5 1026.1 1026.9 0.2 

Jun. 7,200 1026.4 1025.8 1026.8 0.2 

Jul. 7,440 1026.1 1025.5 1026.7 0.3 

Aug. 7,440 1025.7 1024.9 1026.5 0.4 

Sep. 7,200 1025.2 1024.4 1026.4 0.5 

Oct. 7,440 1025.0 1024.3 1025.8 0.3 

Nov. 7,200 1025.3 1024.6 1026.2 0.3 

Dec. 7,440 1025.7 1025.1 1026.4 0.3 
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9 Marine growth 

Marine growth is defined as the unwanted settlement and growth of marine 

organisms on submerged surfaces of ship hulls, buoys, piers, offshore 

platforms, etc. It may also be referred to as “marine fouling” or “biofouling”. The 

composition and extent of marine growth vary with the biogeographical region 

being higher at tropical regions than at other latitudes.  

The assessment of marine growth is based on scientific publications (see [32], 

[33], [34], [35]). From those publications there are not available marine growth 

time series, only values of observed marine growth weight at different water 

depths.  

Numerous factors influence the amount and type of marine growth, including 

salinity, temperature, depth, current speed, and wave exposure, in addition to 

biological factors such as food availability, larval supply, presence of predators, 

and the general biology and physiology of the fouling species. Extensive 

knowledge on factors that affect the level of marine growth in the North Sea 

has been obtained through years of operation and maintenance of gas and oil 

platforms. Once a new hard substrate has been introduced into the 

environment, the organisms colonise quickly, and can grow within days. 

Typically, a succession in species composition will take place as the age of the 

deployed substrate increases. The succession is a result of organisms 

competing for space, and a quasi-steady state in fouling communities will be 

established within less than 4 to 6 years. Along with succession, individual 

organisms grow larger which creates an increasing thickness of marine growth. 

Predators such as starfish become an integral part of the fouling ecosystem 

finding empty spaces in the marine growth cover. In the southern North Sea 

(< 56° N), some studies have shown that marine growth on offshore 

installations (6900 records from 39 locations duing 1996-2017) may vary 

between 0 and 350 mm with an average of 52.76 mm (± 36.54 mm standard 

deviation) [32]. Of those installations located in regions with high 

concentrations of chlorophyll (0.84 mg/m3) showed thicker layers of marine 

growth. DNV [16] states that values, up to 150 mm between sea level and LAT 

–10 m, may be seen in the Southern North Sea. 

Studies carried out in two existing offshore wind farms, Egmond aan Zee (52.6° 

N, 4.41° E) and Princess Amalia (52.58° N, 4.02° E), located at a depth range 

of 17 – 22 m within the Dutch EEZ have demonstrated that marine growth 

below the splash zone (±1 m) is dominated by mussels, starfish (predating on 

mussels), various crustaceans (sessile and mobile), sea anemones and 

polychaetes (tube-building and mobile) [33], [34], [35]. Thickness of marine 

growth was measured/estimated on two monopiles in the Egmond aan Zee 

wind farm 1.7 years after monopile erection and probably too early to reflect a 

mature fouling community. Below the splash zone, marine growth ranged 

between 5 and 15 cm in the upper 6-7 m of a monopile. Below 6-7 m, the 

thickness of marine growth decreased to between 1 and 5 cm but with 100% 

cover. The marine growth will add to the weight of substructures (monopiles) 

ranging between 1 and 6.5 kg/m2
 depending on depth. Weight data from the 

two existing wind farms (Egmond aan Zee and Princess Amalia) differs with 

respect to depth-distribution as Egmond aan Zee showed increasing weight 

under water from 2 kg/m2
 at 2 m to 6.5 kg/m2

 at 10 m and decreasing to 1.5 

kg/m2
 at 15 m. In contrast, marine growth in Princess Amalia wind farm, 

monitored after 4 and 6 years of installation, peaked at 2 m with weight under 

water at 4.3 kg/m2
 gradually decreasing to 1 kg/m2

 at 10 m, to increase again to 
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1.5 kg/m2
 at 17 m. Slightly smaller values are expected at higher latitudes of 

the North Sea. 

In [36], density data were acquired from A12-CCP and the Q1 Haven platforms 

operated by Petrogas E&P Netherlands B.V. to model density across 39 

platforms located in the southern North Sea. Weight varied from 2 to 113 kg/m2
 

(average 47 kg/m2), thickness from 5 to 120 mm (average 35 mm) with 

densities between 311 and 945 kg/m3. The model predicted a reduction in 

weight with depth and a generalised density of 612 kg/m3. 

At Central and Northern North Sea (56°N to 59°N), DNV [16] suggest applying 

a thickness of marine growth of 10 cm (from sea surface to 40 m depth) to 

account for the added weight on the structural component. The density of the 

marine growth may be set equal to 1325 kg/m3 (resulting in thickness of 1-

5 mm considering a weight of 1-6.5 kg/m2) unless more accurate data are 

available. We suggest following DNVs recommendation, which also will be in 

line with the observed/calculated depth distribution of ash free and wet weight 

of biomass.  



 

  111 

10 References 

 

[1] DHI, "Energy Island North Sea, Metocean Site Conditions 
Assessment, Part A: Data Basis – Measurements & 
Models, 2023-06-09 ", 2023.  

[2] NORSOK, "Actions and action effects, N-003, Edition 3, 
April 2016," 2016.  

[3] Environmental Conditions and Environmental Loads, 
DNV-RP-C205, DNV, 2021. [Online]. Available: 
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-
04/RP-C205.pdf 

[4] Energinet, "Scope of Services – North Sea Energy Island 
Metocean Conditions Assessment, document number: 
2/05192-6, 2022-06-22," 2022.  

[5] Energinet, "Scope of Services – Site Metocean 
Conditions Assessment for Offshore Wind Farms, North 
Sea, Document number: 22/08564-1, 2022-11-08," 2022.  

[6] Wind energy generation systems – Part 3-1: Design 
Requirements for fixed offshore wind turbines. Ed. 1.0, 
IEC-61400-3-1, 2019.  

[7] DHI, "Energy Island North Sea, Metocean Site Conditions 
Assessment, Part B: Data Analyses – Energy Island, 
2023-06-16," 2023.  

[8] DHI, "Energy Island, North Sea, Metocean Site 
Conditions Assessment, Part C: Data Analyses – Wind 
Farm Area (FEED), due Apr. 2023," 2023.  

[9] DHI, "Energy Island North Sea, Metocean Site Conditions 
Assessment, Part D: Data Basis – Hindcast revalidation 
note, due Jan. 2024," 2024.  

[10] D. L. Codiga, "Unified Tidal Analysis and Prediction Using 
the UTide Matlab Functions. Technical Report 2011-01," 
Graduate School of Oceanography, University of Rhode 
Island, Narragansett, RI. 59pp, 2011.  

[11] B. B. a. S. L. R. Pawlowicz, "Classical tidal harmonic 
analysis including error estimates in MATLAB using T-
TIDE, Computers & Geosciences 28, pp. 929-937," 2002.  

[12] K. E. L. a. D. A. Jay, "Enhancing tidal harmonic analysis: 
Robust (hybrid L-1/L-2) solutions, Cont. Shelf Res. 29, 
pp. 78-88. DOI: 10.1016/j.csr.2008.1004.1011," 2009.  

http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf


 

  112 

[13] J. Y. C. a. V. A. B. M. G. G. Foreman, "Versatile 
Harmonic Tidal Analysis: Improvements and 
Applications," J. Atmos. Oceanic Tech. 26, pp. 806-817. 
DOI: 810.1175/2008JTECHO1615.1171, 2009. 

[14] D. Shepard, "A two-dimensional interpolation function for 
irregularly-spaced data," in ACM National Conference, 
1968: Association for Computing Machinery, in ACM '68, 
pp. 517–524.  

[15] DHI, "MIKE 21 Spectral Waves FM: User Guide," 2022.  

[16] Loads and site conditions for wind turbines, DNV-ST-
0437, DNV, 2021.  

[17] J. D. Fenton, "The numerical solution of steady water 
wave problems," Computers & Geosciences, vol. vol. 14, 
pp. pp. 357-368, 1988. 

[18] J. D. Fenton, "Nonlinear Wave Theories," Ocean 
Engineering Science, vol. Vol.9, 1990. 

[19] B. T. S. Paulsen, Ben de; van der Meulen, Michiel; 
Jacobsen, Niels Gjøl, "Probability of wave slamming and 
the magnitude of slamming loads on offshore wind 
turbine foundations," Coastal Engineering, pp. 76-95, 
2019. 

[20] H. Madsen, P. S. Mikkelsen, D. Rosbjerg, and P. 
Harremoës, "Regional estimation of rainfall intensity-
duration-frequency curves using generalized least 
squares regression of partial duration series statistics," 
Water Resources Research, vol. 38, no. 11, pp. 21-1-21-
11, 2002, doi: https://doi.org/10.1029/2001WR001125. 

[21] H. Madsen, I. Gregersen, D. Rosbjerg, and K. Arnbjerg-
Nielsen, "Regional frequency analysis of short duration 
rainfall extremes using gridded daily rainfall data as co-
variate.," presented at the Water Sci Technol., 2017. 

[22] D. Rosbjerg and H. Madsen, "Initial design of urban 
drainage systems for extreme rainfall events using 
intensity–duration–area (IDA) curves and Chicago design 
storms (CDS)," Hydrological Sciences Journal, vol. 64, 
no. 12, pp. 1397-1403, 2019/09/10 2019, doi: 
10.1080/02626667.2019.1645958. 

[23] S. Thorndahl, J. E. Nielsen, and M. R. Rasmussen, 
"Estimation of Storm-Centred Areal Reduction Factors 
from Radar Rainfall for Design in Urban Hydrology," 
Water, vol. 11, no. 6, p. 1120, 2019. [Online]. Available: 
https://www.mdpi.com/2073-4441/11/6/1120. 

https://doi.org/10.1029/2001WR001125
https://www.mdpi.com/2073-4441/11/6/1120


 

  113 

[24] NERC, "Flood Studies Report," National Environment 
Research Council, UK, 1975, vol. II.  

[25] K. Arnbjerg-Nielsen, H. Madsen, and P. S. Mikkelsen, 
"Regional variation af ekstremregn i Danmark- ny 
bearbejdning (1979–2005)," Ingeniørforeningen i 
Danmark - IDA, 2006.  

[26] C. J. Keifer and H. H. Chu, "Synthetic Storm Pattern for 
Drainage Design," Journal of the Hydraulics Division, vol. 
83, no. 4, pp. 1332-1-1332-25, 1957, doi: 
doi:10.1061/JYCEAJ.0000104. 

[27] D. Rosbjerg, Madsen, H., Rasmussen, P.F., "Prediction 
in partial duration series with generalized Pareto-
distributed exceedances,," Water Resources Research,, 
vol. 28(11), 3001-3010., 1992. 

[28] D. J. Cecil. LIS/OTD Gridded Lightning Climatology Data
 Collection, Version 2.3.2015, NASA EOSDIS Global 
Hydrology Resource Center Distributed Active  
Archive Center, Huntsville, Alabama, U.S.A., doi: 
http://dx.doi.org/10.5067/LIS/LIS-OTD/DATA311. 

[29] D. J. B. Cecil, D. E.; Blackeslee, R. J., "Gridded lightning 
climatology from TRMM-LIS and OTD: Dataset 
description," Atmospheric Research, vol. 135-136, pp. 
404-414, 2014. 

[30] P. R. J. Doran, D. J. Beberwyk, G. R. Brooks, G. A. 
Gayno, R. T. Williams, J. M. Lewis and R. J. Lefevre, 
"The MM5 at the AF Weather Agency – new products to 
support military operations," in 8th Conference on 
Aviation, Range, and Aerospace Meteorology, American, 
Dallax, TX, USA., 1999.  

[31] F. J. Millero and A. Poisson, "International one-
atmosphere equation of state of seawater," Deep Sea 
Research Part A. Oceanographic Research Papers, vol. 
28, no. 6, pp. 625-629, 1981/06/01/ 1981, doi: 
https://doi.org/10.1016/0198-0149(81)90122-9. 

[32] L. P. Almeida and J. W. P. Coolen, "Modelling thickness 
variations of macrofouling communities on offshore 
platforms in the Dutch North Sea," Journal of Sea 
Research, vol. 156, p. 101836, 2020/01/01/ 2020, doi: 
https://doi.org/10.1016/j.seares.2019.101836. 

[33] M. C. Bruijs, "Biological Fouling - Survey of marine 
fouling on turbine support structures of the Offshore 
Windfarm Egmond aan Zee.," in "KEMA Nederland B.V.," 
50863511-TOS/PCW 10-4207, 2010.  

http://dx.doi.org/10.5067/LIS/LIS-OTD/DATA311
https://doi.org/10.1016/0198-0149(81)90122-9
https://doi.org/10.1016/j.seares.2019.101836


 

  114 

[34] W. L. Bouma, S., "Benthic communities on hard 
substrates of the offshore wind farm Egmond aan Zee 
(OWEZ) - Including results of samples collected in scour 
holes," in "Bureau Waardenburg bv," 
OWEZ_R_266_T1_20120206_hard_substrate, 2012.  

[35] T. V. d. M. Vanagt, L. and Faasse, M. , "Development of 
hard substrate fauna in the Princess Amalia Wind Farm. 
Monitoring 3.5 years after construction.," 2013.  

[36] J. W. P. A. Coolen, L. P.; Olie, R., "Modelling marine 
growth biomass on North Sea offshore structures," 
presented at the Structures in the Marine Environment 
(SIME2019), Glasgow, UK, 2019. 

[37] J. E. Heffernan and J. A. Tawn, "A conditional approach 
for multivariate extreme values," Journal of the Royal 
Statistical Society. Series B, vol. 66, no. 3, pp. 497-546, 
2004. 

[38] H. F. Hansen, D. Randell, A. R. Zeeberg, and P. 
Jonathan, "Directional–seasonal extreme value analysis 
of North Sea storm conditions," Ocean Engineering, vol. 
195, 2020, doi: 10.1016/j.oceaneng.2019.106665. 

[39] P. S. Tromans and L. Vanderschuren, "Response Based 
Design Conditions in the North Sea: Application of a New 
Method," presented at the Offshore Technology 
Conference, Houston, Texas, 1995. [Online]. Available: 
dx.doi.org/10.4043/7683-MS. 

[40] G. Z. Forristall, "On the Use of Directional Wave Criteria," 
Journal of Waterway, Port, Coastal, and Ocean 
Engineering, vol. 130, no. 5, pp. 272-275, 2004, doi: 
10.1061/(asce)0733-950x(2004)130:5(272). 

[41] Environmental Conditions and Environmental Loads, 
DNV-RP-C205, DNV, 2014. [Online]. Available: 
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-
04/RP-C205.pdf 

[42] G. Z. Forristall, "Wave Crest Distributions: Observations 
and Second-Order Theory," Journal of Physical 
Oceanography, vol. 30, no. 8, pp. 1931-1943, 2000, doi: 
dx.doi.org/10.1175/1520-
0485(2000)030<1931:wcdoas>2.0.co;2. 

[43] A. J. Battjes and W. H. Groenendijk, "Wave height 
distributions on shallow foreshore," Coastal Enginnering, 
vol. 40, no. 3, pp. 161-182, 2000. 

http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf


 

  115 

[44] P. S. Tromans and L. Vanderschuren, "Response Based 
Design Conditions in the North Sea: Application of a New 
Method," OTC-7683, pp. 387-397, 1995. 

[45] P. S. Tromans, A. R. Anaturk, and P. Hagemeijer, "A new 
model for the kinematics of large ocean waves- 
Application as a design wave.," International Society of 
Offshore and Polar Engineers, 1991. 

[46] P. Thompson, Y. Cai, R. Moyeeda, D. Reeve, and J. 
Stander, "Bayesian nonparametric quantile regression 
using splines," Computational Statistics and Data 
Analysis, vol. 54, pp. 1138-1150, 2010. 

[47] P. Jonathan, D. Randell, Y. Wu, and K. Ewans, "Return 
level estimation from non-stationary spatial data exhibing 
multidimensional covaiate effects," Ocean Engineering, 
no. 88, pp. 520-532, 2014. 

[48] P. Eilers and B. Marx, "Multivariate calibration with 
temperature interaction using two-dimensional penalized 
signal regression," Chemometrics and Intelligent 
Laboratory Systems, vol. 66, no. 2, pp. 159-174, 2003. 

[49] I. D. Currie, M. Durban, and P. H. C. Eilers, "Generalized 
linear array models with applications to multidimensional 
smoothing," Journal of the Royal Statistical Society: 
Series B (Statistical Methodology), vol. 68, no. 2, 2006. 

[50] P. H. C. Eilers, I. D. Currie, and M. Durban, "Fast and 
compact smoothing on large multidemsional grids," 
Computational Statistics & Data Analysis, vol. 50, no. 1, 
pp. 61-76, January 2006. 

[51] P. J. Green and B. W. Silverman, "Nonparametric 
Regression and Generalized Linear Models," Chapman & 
Hall, 1994. 

[52] S. Lang and A. Brezger, "A Bayesian P-Splines," Journal 
of Computational and Graphical Statistics, no. 13, pp. 
183-212, 2004. 

[53] G. O. Roberts and J. S. Rosenthal, "Examples of 
Adaptive MCMC," Journal of Computational and 
Graphical Statistics, vol. 18, pp. 349-367, 2009. 

[54] H. Rue, "Fast Sampling of Gaussian Markov Random 
Fields with Applications," Journal of the Royal Statistical 
Society, vol. Series B, 2001. 

 



 

  116 

11 Appendix A: List of Data Reports 

This appendix presents a list of data reports attached to this report. 

Table 11.1 List of data reports (.xlsx) attached to this report. 

Metocean (including T-EVA), and extreme conditions (J-EVA).  

Filename 

Normal conditions (including T-EVA) 

EINS-1_Metocean-Data-Report_2023-06-30.xlsx 

EINS-2_Metocean-Data-Report_2023-06-30.xlsx 

EINS-3_Metocean-Data-Report_2023-06-30.xlsx 

EINS-4_Metocean-Data-Report_2023-06-30.xlsx 

EINS-5_Metocean-Data-Report_2023-06-30.xlsx 

Extreme conditions (based on J-EVA) 

EINS-1_J-EVA_Data_Report_2023-06-30.xlsx 

EINS-2_J-EVA_Data_Report_2023-06-30.xlsx 

EINS-3_J-EVA_Data_Report_2023-06-30.xlsx 

EINS-4_J-EVA_Data_Report_2023-06-30.xlsx 

EINS-5_J-EVA_Data_Report_2023-06-30.xlsx 
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12 Appendix B: Comparison of J-EVA 

and T-EVA 

This section presents a comparison between the traditional extreme 

value analysis (T-EVA) and the joint extreme value analysis (J-EVA). 

Introduction 

It is significant to understand the fundamental differences between J-EVA and 

T-EVA, and the reason for preferring J-EVA over T-EVA. The differences arise 

mainly from the considerations summarised in Table 12.1. 

 

Table 12.1 Differences between T-EVA and J-EVA 

T-EVA J-EVA 

Characterises nature less accurately Characterises nature more 
accurately 

Less consistent estimates of joint 
parameters 

Consistent joint probabilities of 
conditioned (associated) parameters  

Storms are characterised only by the 
conditioning parameter 

Storms are characterised by ALL 
variables (wave, current, water level 
and wind) 

Fitting of directional extremes 
decoupled with monthly extremes Consistent directional and seasonal 

extreme values Fitting of monthly extremes 
decoupled with directional extremes 

Evolution of a storm remains in a 
particular direction/month 

Storms can build up in one sector, 
peak in another and finally decay in 
a third sector 

Parameters of distribution remain 
fixed – Frequentist approach 

Parameters of the distribution are 
allowed to vary – Bayesian approach 

Uncertainty of an estimate is larger, 
particularly for larger return periods  

Uncertainty is accounted for in the 
estimate leading to lower uncertainty 
for high return values 

Large “subjectivity” in EVA 
distributions 

Less “subjectivity” in EVA 
distributions 

 

Comparison at EINS-2 

Figure 12.1 - Figure 12.3 shows the extreme value distributions of Hm0, Hmax, 

and Cmax,MSL at EINS-2 using T-EVA (results for all wind, water level, current, 

and waves variables of T-EVA are given in the data reports). These plots 

depict the final distributions chosen from a sensitivity analysis using multiple 

thresholds, distributions (see section on sensitivity below), and fitting methods 

to assess the goodness of fit (visually), the magnitude (inter-compared), depth 

considerations (waves), and general guidelines and practices for conducting 

EVA.  
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Figure 12.1 Extreme value distribution of Hm0 at EINS-2 

 

 

 

Figure 12.2 Extreme value distribution of Hmax at EINS-2 
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Figure 12.3 Extreme value distribution of Cmax, MSL at EINS-2 

 

Figure 12.5 - Figure 12.5 and Table 14 shows the differences between the 

estimated extreme values using T-EVA and J-EVA for the following 

parameters: 

• Hm0, Hmax, Cmax, SWL, Cmax, MSL, WS, CS, HWLtot, LWLtot, HWLres, LWLres.  

Note that the truncation to water depth, see Section 6.2.6, to Hmax and Cmax,SWL 

results in identical values for T-EVA and J-EVA for high return periods.  

The numbers show that the estimates using T-EVA are generally slightly larger 

although the magnitude of differences depends on the parameter. The largest 

difference of 1 m is observed for Hmax and Cmax,MSL respectively for 1.000- and 

100-year return periods.  

The reason for such differences is that T-EVA and J-EVA are fundamentally 

different approaches and cannot be directly compared. Cf. Table 12.1, J-EVA 

uses a Bayesian approach, multi-variate fitting for directions and seasons, 

embedding of statistical uncertainty, etc. In T-EVA, the estimated extremes are 

rather sensitive to choices of distribution and fitting, which according to 

common practise is based on sensitivity tests, inspection of the quality of fits, 

and assessment of how stable the estimated fits/values are.  
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Table 12.2 Differences between the estimated extremes of T- and J-EVA 

Differences, T-EVA – J-EVA 

TR [yr] Hm0 Hmax Cmax,SWL Cmax,MSL WS CS HWLtot LWLtot HWLres LWLres 

1 0.2 0.1 0.2 0.3 -0.3 0.1 -0.1 0.0 0.0 0.0 

5 0.1 0.1 0.2 0.3 -0.3 0.0 0.0 -0.1 0.0 0.0 

10 0.0 0.1 0.2 0.3 -0.2 0.1 0.0 0.0 0.1 0.0 

50 -0.1 0.1 0.2 0.7 0.3 0.1 0.0 -0.1 0.1 -0.1 

80 0.0 0.2 0.2 0.9 0.3 0.1 0.0 -0.1 0.1 0.0 

100 -0.1 0.3 0.3 1.0 0.2 0.1 0.0 -0.1 0.1 -0.1 

1000 0.0 1.0 0.4 0.4 0.4 0.1 0.2 -0.2 0.2 -0.1 

10000 0.2 0.0 0.0 -0.1 0.0 0.1 0.3 -0.3 0.3 -0.2 
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Figure 12.4 Differences between the estimated extremes of T- and J-EVA 

Top to bottom: Hm0, Cmax,SWL, WS, HWLtot, and HWLres. 
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Figure 12.5 Differences between the estimated extremes of T- and J-EVA 

Top to bottom: Hmax, Cmax,MSL, CS, LWLtot, and LWLres. 

 

  



 

  123 

Sensitivity of T-EVA to distribution, threshold, and fitting 

Figure 12.6 - Figure 12.9 presents sensitivity of T-EVA to distribution, 

threshold, and fitting for all considered variables (WS, Hm0, WL, and CS). The 

plots depict the 100-year value vs. number of events year. These plots were 

used to assess the variability of the estimate according to various distributions 

and fittings (ML = Maximum Likelihood, LS = Least-squares), and together with 

visual inspection of the actual distribution plots this governed the choice of 

settings for T-EVA of each variable.  

 

 

Figure 12.6 Sensitivity of T-EVA to distribution, threshold, and fitting – WS 

(top) and Hm0 (bottom) 
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Figure 12.7 Sensitivity of T-EVA to distribution, threshold, and fitting – 

WLtot (top) and WLres (bottom) 
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Figure 12.8 Sensitivity of T-EVA to distribution, threshold, and fitting – 

WLtot,low (top) and WLres,low (bottom) 
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Figure 12.9 Sensitivity of T-EVA to distribution, threshold, and fitting – CStot 

(top) and CSres (bottom) 
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13 Appendix C: T-EVA – Traditional EVA 

This document describes the DHI extreme value analysis (EVA). 

13.1 Summary of approach 

Extreme values with conditioned long return periods are estimated by fitting a 

probability distribution to historical data. Several distributions, data selection 

and fitting techniques are available for estimation of extremes, and the 

estimated extremes are often rather sensitive to the choice of method. 

However, it is not possible to choose a preferred method only on its superior 

theoretical support or widespread acceptance within the industry. Hence, it is 

common practice to test several approaches and make the final decision based 

on goodness of fit. 

The typical extreme value analyses involved the following steps: 

1. Extraction of independent identically-distributed events by requiring that 

events are separated by at least 36 hours (or similar), and that the value 

between events had dropped to below 70% (or similar) of the minor of two 

consecutive events. The extraction is conducted individually for omni and 

directional/seasonal subsets respectively. 

2. Fitting of extreme value distribution to the extracted events, individually for 

omni and directional/seasonal subsets. Distribution parameters are 

estimated either by maximum likelihood or least-square methods. The 

following analysis approaches are used (see Section 13.2 for details): 

- Fitting the Gumbel distribution to annual maxima. 

- Fitting a distribution to all events above a certain threshold (the Peak-
Over-Threshold method). The distribution type can be exponential, 
truncated Weibull or 2-parameter Weibull to excess. 

3. Constraining of subseries to ensure consistency with the omni/all-year 

distribution; see Section 13.4 for details. 

4. Bootstrapping to estimate the uncertainty due to sampling error; see 

Section 13.6 for details. 

5. Values of other parameters conditioned on extremes of one variable are 

estimated using the methodology proposed in [37] (Heffernan & Tawn).  

Figure 13.1 shows an example of EVA based on 38 years of hindcast data and 

a Gumbel distribution fitted to the annual maxima using max. likelihood.  
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Figure 13.1 Example of traditional extreme value analysis of Hm0. 

A Gumbel distribution fitted to the annual maxima using maximum 

likelihood. 

13.2 Long-term distributions 

The following probability distributions are often used in connection with 

extreme value estimation: 

- 2-parameter Weibull distribution 
- Truncated Weibull distribution 
- Exponential distribution 

- Gumbel distribution 

The 2-parameter Weibull distribution is given by: 

𝑃(𝑋 < 𝑥) = 1 − exp(−(
𝑥

𝛽
)
𝛼

) (13.1) 

with distribution parameters α (shape) and β (scale). The 2-parameter Weibull 

distribution used in connection with Peak-Over-Threshold (POT) analysis is 

fitted to the excess of data above the threshold, i.e., the threshold value is 

subtracted from data prior to fitting. 

The 2-parameter truncated Weibull distribution is given by: 

𝑃(𝑋 < 𝑥) = 1 −
1

𝑃0
exp (−(

𝑥

𝛽
)
𝛼

) (13.2) 

with distribution parameters α (shape) and β (scale) and the exceedance 

probability, P0, at the threshold level, γ, given by: 

𝑃0 = exp(−(
𝛾

𝛽
)
𝛼

) (13.3) 

The 2-parameter truncated Weibull distribution is used in connection with 

Peak-Over-Threshold analysis, and as opposed to the non-truncated 2-p 

Weibull, it is fitted directly to data, i.e., the threshold value is not subtracted 

from data prior to fitting. 

The exponential distribution is given by: 
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𝑃(𝑋 < 𝑥) = 1 − exp(−(
𝑥 − 𝜇

𝛽
)) ,   𝑥 ≥ 𝜇 

(13.4) 

with distribution parameters β (scale) and μ (location). Finally, the Gumbel 

distribution is given by: 

𝑃(𝑋 < 𝑥) = exp(−exp(
𝜇 − 𝑥

𝛽
)) 

(13.5) 

with distribution parameters β (scale) and μ (location). 

 

13.3 Individual wave and crest height 

Short-term distributions 

The short-term distributions of individual wave heights and crests conditional 

on Hm0 are assumed to follow the distributions proposed by Forristall, (Forristall 

G. Z., 1978) and (Forristall G. Z., 2000). The Forristall wave height distribution 

is based on Gulf of Mexico measurements, but experience from the North Sea 

has shown that these distributions may have a more general applicability. The 

Forristall wave and crest height distributions are given by: 
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where the distribution parameters, α and β, are as follows: 

Forristall wave height: α = 0.681  β = 2.126 

Forristall crest height (3D): α = 0.3536 + 0.2568·S1 + 0.0800·Ur 

β = 2 – 1.7912·S1 – 0.5302·Ur + 0.284·Ur2 
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3

2

d
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For this type of distribution, the distribution of the extremes of a given number 

of events, N, (waves or crests) converges towards the Gumbel distribution 

conditional on the most probable value of the extreme event, Hmp (or Cmp for 

crests): 
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13.3.1 Individual waves (modes) 

The extreme individual wave and crest heights are derived using the storm 

mode approach, (Tromans, P.S. and Vanderschuren, L., 1995). The storm 

modes, or most probable values of the maximum wave or crest in the storm 

(Hmp or Cmp), are obtained by integrating the short-term distribution of wave 
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heights conditional on Hm0 over the entire number of sea states making up the 

storm. In practice, this is done by following these steps: 

1. Storms are identified by peak extraction from the time series of significant 

wave height. Individual storms are taken as portions of the time series with 

Hm0 above 0.7 times the storm peak, Hm0. 

2. The wave (or crest) height distribution is calculated for each sea state 

above the threshold in each individual storm. The short-term distribution of 

H (or C) conditional on Hm0, P(h|Hm0), is assumed to follow the empirical 

distributions by Forristall (see Section 13.3). The wave height probability 

distribution is then given by the following product over the n sea states 

making up the storm: 

( ) ( )
=

=
seastates

jwaves

n

j

N
jmHhPhHP

1

,0max
,|  (13.8) 

with the number of waves in each sea state, Nwaves, being estimated by deriving 

the mean zero-crossing period of the sea state. The most probable maximum 

wave height (or mode), Hmp, of the storm is given by: 

( )
e

hHP
1

max =  (13.9) 

This produces a database of historical storms each characterised by its most 

probable maximum individual wave height which is used for further extreme 

value analysis. 

 

13.3.2 Convolution of short-term variability with long-term 

storm density 

The long-term distribution of individual waves and crests is found by 

convolution of the long-term distribution of the modes (subscript mp for most 

probable value) with the distribution of the maximum conditional on the mode 

given by: 
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The value of N, which goes into this equation, is determined by defining 

equivalent storm properties for each individual storm. The equivalent storms 

have constant Hm0 and a duration such that their probability density function of 

Hmax or Cmax matches that of the actual storm. The density functions of the 

maximum wave in the equivalent storms are given by: 
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The β parameter in eq. (13.10) comes from the short-term distribution of 

individual crests, eq. ((13.6), and is a function of wave height and wave period. 
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Based on previous studies, it has been assessed that the maximum crest 

heights are not sensitive to βC for a constant value of 1.88 and hence, it is 

decided to apply βC = 1.88. The number of waves in a storm, N, was 

conservatively calculated from a linear fit to the modes minus one standard 

deviation. 

13.4 Subset extremes 

Estimates of subset (e.g., directional, and monthly) extremes are required for 

several parameters. To establish these extremes, it is common practice to fit 

extreme value distributions to data sampled from the population (i.e., the model 

database) that fulfils the specific requirement e.g., to direction, i.e., the 

extremes from each direction are extracted and distributions fitted to each set 

of directional data in turn. By sampling an often relatively small number of 

values from the data set, each of these directional distributions is subject to 

uncertainty due to sampling error. This will often lead to the directional 

distributions being inconsistent with the omnidirectional distribution fitted to the 

maxima of the entire (omnidirectional) data set. Consistency between 

directional and omnidirectional distributions is ensured by requiring that the 

product of the n directional annual non-exceedance probabilities equals the 

omnidirectional, i.e.: 

∏𝐹𝑖(𝑥, 𝜃𝑖)
𝑁𝑖

𝑛

𝑖=1

= 𝐹𝑜𝑚𝑛𝑖(𝑥, 𝜃𝑜𝑚𝑛𝑖)
𝑁𝑜𝑚𝑛𝑖

 
(13.12) 

where Ni is the number of sea states or events for the i’th direction and θ̂i, the 

estimated distribution parameter. This is ensured by estimating the distribution 

parameters for the individual distributions and then minimising the deviation: 

𝛿 =∑[−ln(−𝑁𝑜𝑚𝑛𝑖ln𝐹𝑜𝑚𝑛𝑖(𝑥, 𝜃𝑜𝑚𝑛𝑖))

𝑥𝑗

+ ln(−∑𝑁𝑖ln𝐹𝑖(𝑥𝑗 , 𝜃𝑖)

𝑛

𝑖=1

)]

2

 

(13.13) 

Here xj are extreme values of the parameter for which the optimisation is 

carried out, i.e., the product of the directional non-exceedance probabilities is 

forced to match the omnidirectional for these values of the parameter in 

question. 

The directional extremes presented in this report are given without scaling, that 

is, a Tyr event from direction i will be exceeded once every T years on the 

average. The same applies for monthly extremes. A Tyr monthly event 

corresponds to the event that is exceeded once (in that month) every T years, 

which is the same as saying that it is exceeded once every T/12 years (on 

average) of the climate for that month. 

13.4.1 Optimised directional extremes 

The directional extremes are derived from fits to each subseries data set 

meaning that a TR year event from each direction will be exceeded once every 

TR years on average. Having e.g., 12 directions, this means that one of the 

directions will be exceeded once every TR/12 years on average. A 100-year 

event would thus be exceeded once every 100/12 = 8⅓ years (on average) 

from one of the directions. 
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For design application, it is often required that the summed (overall) return 

period (probability) is TR years. A simple way of fulfilling this would be to take 

the return value corresponding to the return period TR times the number of 

directions, i.e., in this case the 12x100 = 1200-year event for each direction. 

However, this is often not optimal since it may lead to very high estimates for 

the strong sectors, while the weak sectors may still be insignificant. 

Alternatively, an optimised set of directional extreme values may be produced 

for design purpose in addition to the individual values of directional extremes 

described above. The optimised values are derived by increasing (scaling) the 

individual TR values of the directions to obtain a summed (overall) probability of 

TR years while ensuring that the extreme values of the strong sector(s) become 

as close to the overall extreme value as possible. In practice, this is done by 

increasing the TR of the weak directions more than that of the strong sectors 

but ensuring that the sum of the inverse directional TR’s equals the inverse of 

the targeted return period, i.e.: 

∑
1

𝑇𝑅,𝑖

𝑛

𝑖=1

=
1

𝑇𝑅,omni
 

(13.14) 

where n is the number of directional sectors and TR,omni is the targeted overall 

return period. 

 

13.5 Uncertainty assessment 

The extreme values are estimated quantities and therefore all associated with 

uncertainty. The uncertainty arises from several sources: 

Measurement/model uncertainty 

The contents of the database for the extreme value analysis are associated 

with uncertainty. This type of uncertainty is preferably mitigated at the source – 

e.g., by correction of biased model data and removal of obvious outliers in data 

series. The model uncertainty can be quantified if simultaneous good quality 

measurements are available for a reasonably long overlapping period. 

True extreme value distribution is unknown 

The distribution of extremes is theoretically unknown for levels above the levels 

contained in the extreme value database. There is no justification for the 

assumption that a parametric extreme value distribution fitted to 

observed/modelled data can be extrapolated beyond the observed levels. 

However, it is common practice to do so, and this obviously is a source of 

uncertainty in the derived extreme value estimates. This uncertainty, increasing 

with decreasing occurrence probability of the event in question, is not 

quantifiable but the metocean expert may minimise it by using experience and 

knowledge when deciding on an appropriate extreme value analysis approach. 

Proper inclusion of other information than direct measurements and model 

results may also help to minimise this type of uncertainty. 

Uncertainty due to sampling error 

The number of observed/modelled extreme events is limited. This gives rise to 

sampling error which can be quantified by statistical methods such as Monte 

Carlo simulations or bootstrap resampling. The results of such an analysis are 
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termed the confidence limits. The confidence limits (see Section 13.6) should 

not be mistaken for the total uncertainty in the extreme value estimate. 

Settings of the analysis (judgement) 

Any EVA involves the need to define the various settings of the analysis 

(threshold, distribution, and fitting method), which introduces subjectivity to the 

analysis. The sensitivity of these settings can be assessed by comparing the 

resulting extreme values, and the goodness of fit can, to some extent, be 

objectively assessed by statistical measures. However, standard practice 

typically includes manual inspection of the fitted distributions. Hence, the final 

settings, and thus results, relies on the experience and preference of the 

metocean expert conducting the analysis (‘engineering judgement’). The tail of 

the distributions (the values of long the return periods) can be particularly 

sensitive to the settings of the analysis. 

13.6 Confidence limits 

The confidence limits of extreme estimates are established from a bootstrap 

analysis or a Monte Carlo simulation. 

The bootstrap analysis estimates the uncertainty due to sampling error. The 

bootstrap consists of the following steps: 

1. Construct a new set of extreme events by sampling randomly with 

replacement from the original data set of extremes  

2. Carry out an extreme value analysis on the new set to estimate T-year 

events 

An empirical distribution of the T-year event is obtained by looping steps 1 and 

2 many times. The percentiles are read from the resulting distribution. 

In the Monte Carlo simulation, the uncertainty is estimated by randomly 

generating many samples that have the same statistical distribution as the 

observed sample. 

The Monte Carlo simulation can be summarised in the following steps: 

1. Randomly generating a sample consisting of N data points, using the 

estimated parameters of the original distribution. If the event selection is 

based on a fixed number of events, N is set equal to the size of original 

data set of extremes. If the event selection is based on a fixed threshold, 

the sample size N is assumed to be Poisson-distributed. 

2. From the generated sample, the parameters of the distribution are 

estimated, and the T-year return estimates are established. 

Steps 1 and 2 are looped numerous times, whereby an empirical distribution of 

the T-year event is obtained. The quartiles are read from the resulting 

distribution. 

13.7 Joint probability analyses (JPA) 

Values of other parameters conditioned on extremes of one variable are 

estimated using the methodology proposed in [37] (Heffernan & Tawn). This 

method consists in modelling the marginal distribution of each variable 

separately. The variables are transformed from physical space, X, to standard 

Gumbel space by the relationship: 
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𝑌 = LN (−LN(𝐹(𝑋, 𝜃))) (13.15) 

 

where F(X, θ̂) denotes the distribution function of the variable, X, with estimated 

parameters, θ̂. No restriction is given on the marginal model of the variables. A 

combination of the empirical distribution for the bulk of events and a parametric 

extreme value distribution function fitted to the extreme tail of data was 

adopted here. For parameters which may have both a positive and a negative 

extreme such as the water level conditioned on wave height, both the positive 

and the negative extreme tail are modelled parametrically. 

The dependence structure of the two variables is modelled in standard Gumbel 

distribution space, conditioning one variable by the other. The model takes the 

form: 

(𝑌2|𝑌1 = 𝑦1) = 𝑎𝑦1 + 𝑦1
𝑏𝑍 (13.16) 

with Y1 being the conditioning variable and Y2 the conditioned. The residual, Z, 

is assumed to converge to a normal distribution, G, with increasing y1. The 

parameters, â and b̂, are found from regression and the parameters, μ̂ and σ̂, 

of the normal distribution, G, estimated from the residuals, Z: 

𝑍 =
𝑦2 − 𝑎 ∙ 𝑦1

𝑦1
𝑏  (13.17) 

Figure 13.2 shows an example of the modelled dependence structure for Hm0 

and water level in standard Gumbel space. Figure 13.3 shows the same in 

physical space. The model is clearly capable of describing the positive 

association between wave heights and water level for this condition and 

appears also to capture the relatively large spreading. 

The applied joint probability model is event-based. This means that 

independent events of the conditioning parameter are extracted from the model 

data. The combined inter-event time and inter-event level criterion described in 

Section 13.1 is applied to isolate independent events of the conditioning 

parameter. The conditioned parameter is extracted from the model time series 

at the point in time of the peak of the conditioning parameter. Time averaging 

of the conditioned parameter is often carried out prior to data extraction to 

reduce the influence of phases in the analysis (the fact that the water level may 

not peak at the same time as the peak wave height for instance). 
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Figure 13.2  Dependence structure of Hm0 and water level transformed into 

standard Gumbel space.  

 

 

Figure 13.3  Dependence structure of Hm0 and water level in physical space 
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14 Appendix D: J-EVA Summary 

This section gives a generic overview of the Joint-Extreme Value Analysis (J-

EVA) methodology applied to provide extreme estimates of metocean variables 

(e.g., Hm0 and Cmax). Aspects specific to EINS are also discussed.  

14.1 Joint Extreme Values Analysis (J-EVA) 

J-EVA (Joint-Extreme Value Analysis) is DHI’s implementation of a consistent 

directional-seasonal extreme value analysis method incorporating a Markov 

Chain Monte Carlo (MCMC) Bayesian inference approach to include 

uncertainties. It is based on the work in [38].  

J-EVA comprises of two models, 1) a storm model (see Appendix E: J-EVA – 

Storm Model), and 2) a statistical model (see Appendix F: J-EVA – Statistical 

Model). Both models are outlined in the following subsections which highlight 

the most relevant components of each. A concise step-by-step overview of the 

J-EVA methodology is as follows: 

1. Extreme events (storms) are identified from either modelled hindcast 

according to criteria ensuring independent events. At EINS, the local peaks 

are identified from the corresponding time series of the variables for which 

extreme values are estimated, requiring at least 36 hours between peaks 

and a required drop in the time series value of 0.7 times the value of the 

lowest of the surrounding peaks. The start and end cut-off of the selected 

storm is set to 0.5 × maximum value of the time series.  

2. Characteristic storm variables are computed as explained in Section 14.2. 

3. The identified storms that are selected by their peak magnitude and 

duration are further filtered using regression quantile and (only for wave 

parameters) inverse wave age criteria.  

4. From the J-EVA statistical model a spline model is constructed and fitted 

(both marginal distributions and conditional distributions between the storm 

parameters) to the storms with covariates for direction (e.g., wave or 

current direction) and season (e.g., months) when appropriate. The spline 

model varies smoothly across the covariates. 

5. Posterior distributions of model parameters are found using a Markov 

Chain Monte Carlo (MCMC) approach. The posterior predictive 

distributions implicitly include uncertainties through the propagated errors 

in the prediction. 

6. Many events (typically 1,000,000 years) are sampled from the posterior 

distributions and then real storm trajectories (displaying intra-storm 

variation and hence resolving the individual sea states) are simulated from 

matching the simulated storms with the historical storm time series using 

the J-EVA storm model. The EINS specific inputs are mentioned in Section 

14.4 - 14.4.2. 

7. Extreme values with return period Tr-years are then given by the (N/Tr)th 

largest value in N years of simulations. 

While presenting the results of the J-EVA analysis, a credible interval is always 

presented as a shaded area. A credible interval is a concept used in Bayesian 

statistics, which is the central theme of the J-EVA analysis. The concept of 
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credible interval is very different from the concept of the confidence interval 

used in Frequentist statistics approach. A credible interval is simply the central 

portion of the posterior distribution that contains a chosen percentage of the 

values. At EINS, a range of 2.5% - 97.5% interval is chosen that is equal to 

95% credible interval. In other words, given the observed (simulated) data 

characterised by the likelihood function, the effect that is characterized by the 

posterior distribution has a 95 % probability of falling within this range. 

14.2 J-EVA storm model 

The J-EVA storm model makes use of the evolution in time (also termed intra-

storm evolution) of historical storm events to make predictions of the evolution 

in time of possible events with extremely low exceedance probability.  

A detailed description of the J-EVA storm model is given in Appendix E: J-EVA 

– Storm Model and in Section 2 of Hansen, et al. [38]. Outlined here is a 

concise description of the storm model.   

Storm events evolve in time with a build-up phase, a storm peak, and a decay 

as the storm moves away and/or a low-pressure system decay. It is important 

to accurately model this time evolution and not just the storm peak itself, as the 

time evolution has a direct impact on the short-term response, e.g., Cmax. 

Directionality is also important in this context as wind and wave direction 

typically shift during a storm passage. The J-EVA storm model is used to 

capture this evolution of relevant metocean variables (Hm0, Tp, WS10 etc.) in 

storm events.  

The individual waves and crests are stochastic processes with distributions 

conditional on the underlying sea state properties. This also means that not 

only storm peak Hm0, but also storm duration become important. These are 

estimated in the J-EVA storm model. 

A storm that lasts for many hours is more likely to produce an abnormal wave 

crest compared to a storm that decays rapidly. This was already treated by 

Tromans and Vanderschuren in their most probable maximum response model 

[39]. The application of the Tromans and Vanderschuren model has been 

adapted to characterise the storm magnitude, not by the most probable 

maximum response, but rather by the storm peak significant wave height 

Hm0,peq of an ‘‘equivalent storm’’ exhibiting a Gaussian bell-shaped profile in 

time. Storm duration is then quantified using the standard deviation σeq of the 

Gaussian bell, expressed in multiples of the spectral zero-crossing period. The 

latter is like Tromans and Vanderschuren’ N parameter. Read further in Section 

15.2 of Appendix E: J-EVA – Storm Model and Section 2.1 of Hansen, et al. 

[38].  

14.2.1 Directional and seasonal variability 

J-EVA treats directional and seasonal variations in the statistical distribution of 

metocean variables (e.g., Hm0) using non-stationary extreme value 

distributions. This means that the distributions can vary with season and 

direction, according to the information in the historical extreme events. The 

non-stationarity is implemented using penalised B-splines that allow for smooth 

variations of distribution parameters in multiple dimensions. This is done to 

capture the significant directional and seasonal variations in the wind, wave, 

and current conditions at EINS. Read further on the penalised B-splines in 

Section 2.2 of Hansen, et al. [38]. 
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For datasets with directionally or seasonally distinct distributions, it is possible 

to use only one covariate.  For example, the marginal distribution of water level 

is direction-less and only fitted with a seasonal covariate at EINS. 

14.3 J-EVA statistical model 

The J-EVA statistical model is used to estimate the statistical distribution of the 

characteristic storm values of the metocean variables returned by the J-EVA 

storm model.  

A detailed description of the J-EVA statistical model is given in Appendix F: J-

EVA – Statistical Model and Section 2.2 of Hansen, et al. [38].What follows is 

an outline of the basis of the statistical model. 

This model has a three-step process; 1) the independent estimate of non-

stationary marginal models for each model parameter; 2) the estimation of the 

non-stationary conditional extreme models; and 3) the estimation of the rate of 

occurrence of storm events by a Poisson process. All parameters in 1) to 3) are 

inferred by Markov Chain Monte Carlo (MCMC) Bayesian inference.  

MCMC is a statistical method to approximate a posterior distribution by 

randomly sampling in a probabilistic space, hence it utilises the known data. 

This technique has the advantage that the model parameters of interest are 

represented by statistical posterior distributions rather than fixed values and 

hence also provides an estimate of the uncertainty.  

The marginal distributions are estimated using the assumption that the 

marginal probability distribution of each variable can be expressed as the sum 

of three parts. The first part describes the bulk of the data by a truncated 

gamma distribution using Bayesian inference with sample log-likelihood. While 

the second and third parts consisting of the upper and lower tails (if relevant) 

are then assumed to follow Generalised Pareto (GP) distributions. The tails are 

defined as exceedances of upper and lower quantile thresholds of the marginal 

distribution given covariates with specified non-exceedance probabilities.  

14.3.1 Estimation of the model parameters 

The estimation of the model parameters is carried out using Bayesian MCMC 

techniques. Model parameters, in this case, refer to the distribution parameters 

for the truncated gamma and GP distributions. Rather than using a single value 

for the model parameters, this method utilises a distribution of the model 

parameters which are then sampled from. A prior, or best-guess, based on the 

hindcast data is used to initiate the MCMC method. 

J-EVA integrates over uncertainty when providing extreme value estimates. 

This type of extreme value estimate is called posterior predictive. This is 

particularly important when J-EVA returns extreme value estimates for return 

periods far beyond the duration of the historical time series (from measurement 

or hindcast) used for estimation, as the uncertainty in the estimates increases 

for increasing return periods. By integrating over the uncertainty, one accounts 

for the increased uncertainty and the provided extreme value estimates 

become more robust.  

Posterior predictive distributions of metocean variables (e.g, Hm0, CS) are 

obtained by simulating many years, i.e., integrating across the posterior 

distributions of the model parameters. In practice this is done by integrating 

over a random set of iterations in the MCMC chains. Extreme values for 



 

  139 

various return periods are given by quantiles of the posterior predictive 

distributions (see Eq. 14.1) Using this approach, the extreme values provided 

by J-EVA implicitly include statistical uncertainty in contrast to T-EVA used by 

DHI where bootstrapping is often performed providing confidence intervals. 

The extremes calculated from shorter hindcast time series are not necessarily 

higher than extremes obtained from longer time series (even though the 

statistical uncertainty is higher), as the estimated extremes depend on the data 

itself. However, when everything else is equal, increased uncertainty will result 

in increased extreme value estimates, when posterior predictive estimation is 

used. 

Results in the form of posterior predictive extreme values (of e.g., Hm0, Cmax) 

are obtained from quantiles (qr) in the distribution of the annual maximum. The 

relationship between quantile and return period is given by: 

𝑞𝑟 = exp (−
1

𝑇𝑟
) 

Eq. 14.1 

 

For the evolution of each storm event needed for determining the long term 

distributions of the short-term responses (Hmax and Cmax) the J-EVA storm 

model is applied again to scale the simulated events with the physical correct 

historical events. A cross validation scheme is applied to evaluate the 

predictive power of the spline model. 

14.3.2 Conditional extreme model 

A conditional extremes model, adopted from Heffernan and Tawn, [37], is used 

to model the joint probabilities. This type of joint probability model models the 

distributions of variables conditioned on one of the variables being extreme and 

is therefore useful for modelling the distribution of e.g., wave period or water 

level conditioned on extreme significant wave height. Figure 14.1 shows an 

example of a joint distribution of Tp and Hm0 from 50,000 years simulated data 

compared to hindcast data. Likewise, parameters relevant for Cmax (i.e., T01 

and T02 and WL) are conditioned on extreme Hm0.  

The conditional extreme model is further described in Section 1.4 and Section 

5.3 of Hansen, et al. [38]. 
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Figure 14.1 Example of joint distribution of Tp and Hm0 [38]. 

𝑇𝑝 on 𝐻𝑚0 for each sea-state in the simulated storms. Scatter plots of 

50,000 years of simulated data (coloured round markers) compared 

to hindcast data (black dots); ‘‘warmer’’ colours indicate a higher rate 

of occurrence of simulated events. Solid lines represent directional 

density contours for the 10- and 100-year marginal extreme values.  

14.4 J-EVA simulation 

The concept of simulation is used to obtain the extreme value estimates based 

on the fitted statistical model parameters as explained in Section 14.3.1 and 

14.3.2. The number of exceedances Ne of an extreme value is used as input, 

which is then applied on the largest chosen return period Tr. At EINS, the 

largest Tr = 10,000 years, so, if Ne is chosen as 50, then the number of 

simulations carried out for estimating the 10,000-year extreme are 5x105. 

Extremes estimated for Tr<10,000 years will then have more exceedances 

contributing to the robustness of the estimate.  

14.4.1 Directional Scaling 

The concept and the need of directional scaling is explained in Forristall [40]. 

The concept itself is independent of the method used for estimating the 

extreme values. The directional scaling is applied to the estimated directional 

extremes following the recommendations in DNV [41].  

In J-EVA, the implementation is carried out while simulating the extremes. In 

summary, a two-step scaling procedure is implemented for the marginal 

extremes.  

1. The directional extremes are simulated for return periods corresponding to 

half the number of directional sectors. At EINS, this corresponds to 

simulating the directional extremes for return periods Tr = [1, 5, 10, 50, 80, 

100, 1000, 10000] x 16/2 = [8, 40, 80, 400, 640, 800, 8000, 80000] years.  

2. The estimated directional extremes are capped with the omnidirectional 

extreme corresponding to the original return periods. For example, if in step 

1, the estimated Hm0 = 14.9 m corresponding to a direction of 315° mean 

wave direction for Tr = 80000 years, then it is capped with Hm0 = 14.6 m 

that corresponds to an omnidirectional Hm0 for Tr = 10000 years.  
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The estimated fit parameters based on the unscaled extremes are used to 

evaluate the conditioned variables of the scaled extremes.  

14.4.2 Simulation Optimization 

The simulations used to obtain the extreme value estimates are optimised 

depending on the requested return periods, such that the very long simulations 

required to estimate extreme values with long return periods only include the 

relevant events above a high threshold. Shorter simulations with no threshold 

are then made for the short return period extremes. At EINS, because the 

directional scaling is applied, the largest Tr = 80,000 years. The optimization is 

carried out such that up to Tr ≤ 100 years, the estimates are based on 

simulations of 80,000 years, while for 100 < Tr < 80,000, the estimates are 

based on simulations of Ne × 80,000 years.  

14.5 Convolution of short-term distributions 

The predicted events from the J-EVA storm model are numerically folded with 

the wave height and crest level distributions (e.g., Forristall [42]  or Glukhovskiy 

[43]) to estimate the long-term distribution of the individual wave heights and 

crest levels. For further information, the reader is referred to Section 4 of 

Hansen, et al. [38]. 

The residual water level is modelled conditionally on the extreme significant 

wave height. A residual water level therefore becomes available for every 

storm and for every sea state in the storm such that it can be used in the short-

term distribution.  

14.6 Sampling of tidal signal 

Tide is a deterministic process and thus not eligible for extreme value 

assessments assuming a random population, hence, to comply with statistical 

requirements, tidal variations are introduced separately to the extreme value 

estimation.  

Water levels concurrent with waves are introduced via a model for the 

distribution of residual water level conditional on extreme Hm0, followed by the 

addition of a sampled tidal signal. By using this method, it has been assumed 

that the tide has no influence on Hm0 nor on the residual water level. This 

assumption is often valid in intermediate to deep waters but may not be valid in 

shallow areas with the significant tide. 

Tidal water level signals are sampled for every storm event from a hindcast 

tidal data series from within a period with similar seasonality to account for 

seasonal bias. The total water level, i.e., the distance from a fixed datum (MSL 

or LAT) to the still water level (SWL), is the sum of the residual and tidal water 

levels. It is, therefore, straightforward to include the effect of tide and surge on 

the extreme crest elevations in a statistically consistent manner. 

Similarly, tidal current flow is sampled and combined with the residual current 

flow conditioned on the extreme waves. 
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14.7 Limitations on wave height 

Wave breaking is implicitly accounted for via a depth-dependent reduction in 

the hindcast modelled Hm0 (due to increased energy dissipation in the white-

capping, bottom-friction, and wave breaking source terms).  

Furthermore, for the long-term distribution of Hm0,peq (equivalent peak Hm0 from 

the storm model) has been limited to 0.6 times the water depth in the statistical 

model. This is considered a conservative estimate of the maximum depth-

limited significant wave height.  

Actual evidence of depth limits to significant wave height in field data sets is 

very rare. However, based on previous experience including literature studies, 

there is no knowledge of values higher than 0.6 being reported anywhere. 

In exposed and shallow areas, this will significantly limit the tail of the Hm0 

distribution, see Figure 14.2 for a graphical example. The extrapolation of the 

extreme distribution extends past the expected physical limit of 0.6 times the 

water depth (in this example case, the water depth is approximately 17m).  

Wave breaking is however not accounted for in the Forristall short-term 

distribution of Cmax and only indirectly for some short-term distributions of Hmax. 

(i.e., the Glukhovskiy distribution). 

 

 

 

Figure 14.2 Example of extreme value distribution of Hm0 at a water depth of 

17 m with a Gumbel distribution fitted to the annual maxima 

using maximum likelihood (grey line). No limiting wave 

breaking is inferred. Upper limit of Hm0 assumed as 0.6 x 17 = 

10.2m shown by the orange line. 

In such cases the limit of Hm0 due to water depth in the J-EVA storm 

model would effectively reduce the extreme Hm0 at the tail, also 

below the actual limit, i.e., towards the blue line.  
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15 Appendix E: J-EVA – Storm Model 

The theory and methodology behind the DHI J-EVA storm model are 

described here. The methodology is based on the work presented in 

Hansen et al. (2020)[44]. 

The J-EVA (Joint-Extreme Values Analysis) storm model is a model for the 

description of wave characteristics of storm events.  The model is used in 

conjunction with the J-EVA statistical model to describe the long-term 

distribution of individual wave and crest heights and possibly also wave-

induced structural loading. 

The model defines characteristic storm variables from the historical hindcast or 

measured record of slowly time-varying variables such as (but not limited to) 

significant wave height, peak period, mean or peak wave direction, storm surge 

and wind speed.  These characteristic values are suitable for statistical 

modelling using the J-EVA statistical model.  The statistical modelling of 

characteristic storm variables will allow for generation of long series of 

simulated storm parameters.  The J-EVA storm model can then be applied in 

reverse to generate intra-storm time series of the slowly varying variables.  

Numerical folding with any short-term distribution model of wave or crest height 

or a structural load or load response may be carried out on the intra-storm time 

series to generate the long-term distribution of the response.  

15.1 Characterisation of Historical Storms 

The J-EVA storm model is applied on a time series of slowly varying 

environmental variables.  This time series must include the significant wave 

height and a measure of the mean wave period but can include any other 

environmental variable of interest.  The time series must be on an equidistant 

time axis with sufficiently small-time step size that the time-evolution of the 

storm events of interest are adequately resolved.  

The steps followed to convert this continuous time series into individual storm 

events and then to characterise each event are described in this section. 

15.2 Wave Height and Storm Duration 

Storm events are identified by their significant wave height.  Standard 

metocean techniques for separating the continuous time series of significant 

wave heights into individual (storm) events consist in defining a minimum time 

separation between consecutive storm peaks and moreover often an additional 

requirement that the level must have dropped below a fraction of the minor of 

consecutive peaks in order for those to be defined as two separate events.  

This additional requirement ensures that storms with long durations are not 

unintentionally split into separate events. 

The time series of 𝐻𝑚0 is de-clustered into independent events by requiring 

that there is a pre-specified minimum interevent time between events.  The 

minimum interevent time is dependent on the meteorological events generating 

the storms but is typically in the order of 18-36 hours for extra-tropical 

cyclones.  Moreover, events are only separated if the significant wave height 

has passed below 75% of the minor of two adjacent events.  
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The distribution of the maximum short-term response in each historical storm is 

then calculated.  The empirical short-term distribution of individual wave height 

𝐻 conditional on 𝐻𝑚0 by Forristall (1978) is typically applied, though the actual 

choice of short-term distribution model is not important, as long as the 

distribution is continuous.  The Forristall (1978) short-term distribution of H 

conditional on 𝐻𝑚0, 𝑃(𝐻 < ℎ|𝐻𝑚0), is given by: 

𝑃(𝐻 < ℎ|𝐻𝑚0) = 1 − exp(−(
ℎ

0.681𝐻𝑚0
)
2.126

) 
(15.1) 

The distribution of the maximum wave in storm 𝑖, 𝐻𝑚𝑎𝑥,𝑖 is given by the 

following product over the 𝑛𝑖 sea states making up storm 𝑖: 

𝑃(𝐻𝑚𝑎𝑥,𝑖 < ℎ) =∏𝑃(𝐻 < ℎ|𝐻𝑚0,𝑗)
𝑁𝑗

𝑛𝑖

𝑗=1

  
(15.2) 

The number of waves in sea state 𝑗, 𝑁𝑗, is estimated by dividing the duration of 

the sea state (time step size in the input time series) by the mean zero-

crossing period4 over the sea state.  The most probable storm maximum wave 

height, 𝐻𝑚𝑝,𝑖, is found by solving the following equation for ℎ: 

𝑃(𝐻𝑚𝑎𝑥,𝑖 < ℎ) =
1

exp (1)
≈ 0.37 

(15.3) 

It is shown in the original work by Tromans and Vanderschuren (1995), that 

when 𝑃(𝐻|𝐻𝑚0) is of a Weibull type distribution, Eq. (15.2) converges to a 

generalised Gumbel distribution: 

𝑃(𝐻𝑚𝑎𝑥,𝑖 < ℎ)~exp(−exp(− ln𝑁𝑖 ((
ℎ

𝐻𝑚𝑝,𝑖
)

𝛼

− 1))) 

(15.4) 

where 𝛼 is the shape factor of the wave height distribution (=2.126 in the 

Forristall 1978 distribution) and 𝑁𝑖 is the equivalent number of waves in the 

storm. 

The duration of the storm and thereby the value of 𝑁 is related to the 

narrowness of the distribution of the storm maximum wave.  Storms with long 

durations and thereby many sea states of similar magnitude will have a 

narrower distribution of the storm maximum wave, compared to those storms in 

which the maximum wave will come within a relatively short period in time (i.e. 

within very few sea states).  

This property is used in the J-EVA storm model to characterise storms by peak 

magnitude and a duration.  A Gauss-bell shaped curve is chosen to represent 

the variation in time of 𝐻𝑚0.  The variation in time of 𝐻𝑚0 is defined by 

equivalent storm peak, 𝐻𝑚0, hereafter termed 𝐻𝑚0,𝑝,𝑒𝑞, and equivalent storm 

duration given by the Gauss-bell standard deviation, 𝜎𝑒𝑞, as: 

𝐻𝑚0(𝑡
∗) = 𝐻𝑚0,𝑝,𝑒𝑞 × exp(−

(𝑡∗)2

2𝜎𝑒𝑞2
) 

(15.5) 

𝑡∗ is a pseudo-time measured in number of wave cycles and can be converted 

to true time by use of the slowly varying mean wave period.  Thus, 𝑡∗ = 0 at the 

storm peak (𝐻𝑚0 = 𝐻𝑚0,𝑝,𝑒𝑞) and any 𝑡∗ < 0 defines the number of wave cycles 

 
4 The second moment period 𝑇02 is used as a proxy for the zero-crossing period 
when spectral wave model hindcast data is used as input 
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that will pass before the storm peak is reached, whereas any 𝑡∗ > 0 defines the 

number of wave cycles that have passed since the storm peak. 

Best-fit values of the peak (𝐻𝑚0,𝑝,𝑒𝑞) and standard deviation (𝜎𝑒𝑞) of the Gauss-

bell shaped storm are found by mean-square error minimisation of the 

differences between the actual storm maximum wave height probability density 

and that of the Gauss-bell shaped storm.  The minimisation is carried out as 

follows: 

Sea states with 𝐻𝑚0 < 0.75 × 𝐻𝑚0,𝑝,𝑒𝑞 are found to have insignificant impact on 

the distribution of storm maximum wave height and can be neglected5.  From 

Eq. (15.5), we have that the Gauss-bell shaped storm will cross under 75% of 

𝐻𝑚0,𝑝,𝑒𝑞 at a distance from the peak of 0.759𝜎𝑒𝑞 waves.  Hence, we create an 

evenly spaced vector, 𝒕𝑚
∗  of 𝑚 points, 𝒕𝑚

∗ ∈ [−0.759𝜎𝑒𝑞; 0.759𝜎𝑒𝑞] and evaluate 

𝐻𝑚0 along this vector for storm 𝑖: 

𝐻𝑚0(𝒕𝑚
∗  ) = 𝐻𝑚0,𝑝,𝑒𝑞,𝑖 × exp(−

(𝒕𝑚
∗  )2

2𝜎𝑒𝑞,𝑖
2 ) 

(15.6) 

Each point along this vector represents a sea state of 1.52𝜎𝑒𝑞,𝑖/𝑚 waves.  The 

distribution of the maximum wave in the storm is now given by Eq. (15.2), i.e.: 

𝑃(𝐻𝑚𝑎𝑥,𝑖 < ℎ) =∏𝑃(𝐻 < ℎ|𝐻𝑚0(𝑡𝑚,𝑗
∗ ))

1.52𝜎𝑒𝑞,𝑖/𝑚
𝑚

𝑗=1 

 
(15.7) 

The probability density is obtained by numerical differentiation of Eq.(15.7) and 

the squared difference of this probability density function and that of the actual 

storm is computed.  Minimisation of the squared difference is carried out by 

changing the values of 𝐻𝑚0,𝑝,𝑒𝑞,𝑖 and 𝜎𝑒𝑞,𝑖, whereby best-fit values of these 

parameters are obtained for storm 𝑖. 

Two examples of storm characterisation are shown in Figure 15.1.  The first 

storm (top panel) is an example of a persistent storm lasting for many hours, 

while the second storm (bottom panel) is more intense in its peak but lasting 

only a few hours.  These differences are reflected in the relative values of 

𝐻𝑚0,𝑝,𝑒𝑞 and 𝜎𝑒𝑞. 

15.3 Associated Environmental Variables 

Characteristic storm values of all associated environmental variables to be 

included in the subsequent joint-probability analysis are required.  Examples 

associated variables are: 

- Peak wave direction, PWD 

- Peak period, 𝑇𝑝 

- Second moment period, 𝑇02 
- Directional spreading, 𝜎𝜃 

- Residual water level, 𝑊𝐿𝑟𝑠𝑑𝑙 
- Residual current speed, 𝐶𝑆𝑟𝑒𝑠𝑖 and direction 𝐶𝐷𝑟𝑠𝑑𝑙 
- Wind speed, 𝑊𝑆 and wind direction 𝑊𝐷 
 

 
5 Though sea states with less than 75% of the peak significant wave height have 
negligible influence on the most probable maximum wave in the storm, sea states 
down to 65% of peak significant wave height have been included in the build-up of 
the storm, as these typically contain some of the steepest sea states, and the 
maximum wind speed may also fall early in the storm trajectory. 
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These variables vary during the storm and weighted average values are 

calculated to provide a characteristic value of the variable for each storm.  The 

weight factor, 𝑤𝑗, for sea states 𝑗, 𝑗 = 1: 𝑛𝑖 where 𝑛𝑖 is the number of sea states 

in storm 𝑖, are computed from the contribution of the individual sea states to the 

total storm most probable maximum wave, 𝐻𝑚𝑝: 

 

where 𝐻𝑚𝑝,1:𝑛 is the most probable maximum wave height of the storm 

considering all sea states in the storm and 𝐻𝑚𝑝,1:𝑛,~𝑗 is the most probable 

maximum wave height when sea state 𝑗 is omitted and 𝛼 is  

a normalisation factor.  An overbar (e.g. 𝑇𝑝̅̅̅) is used to denote a characteristic 

(weighted average) value of an environmental variable. 

The characteristic storm second moment period 𝑇02̅̅ ̅̅  is shown in Figure 15.1 for 

the two examples storms. 𝑇02̅̅ ̅̅  takes values close to the values at the storm 

peak. 

 

Figure 15.1 Two examples of hindcast historical storms and storm model 

parameterisation. 

Vertical green bars6: Hourly values of 𝐻𝑚0. Blue triangles: Hourly 

values of 𝑇02. Characteristic storm variables 𝐻𝑚0,𝑝,𝑒𝑞 , 𝜎𝑒𝑞 and 𝑇02̅̅ ̅̅  

values printed on figure. 

 
6 The filled bars mark the sea states which are retained from each storm for 
subsequent intra-storm simulation, see section 15.4. 

𝑤𝑗 = 𝛼(𝐻𝑚𝑝,1:𝑛 −𝐻𝑚𝑝,1:𝑛,~𝑗) (15.8) 
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15.4 Simulation of Intra-Storm Variation 

The J-EVA storm model is also used to simulate intra-storm variation of the 

environmental variables model.  The intra-storm variation refers to the hourly 

variation of the variables during a storm event exemplified by for instance the 

build-up and subsequent decay of wind speed and significant wave height, the 

rotation of the mean wave direction and the increase in wave age from steep 

young wind waves during build-up to swell waves during storm decay. 

The simulation of intra-storm variation consists in matching up simulated 

storms with similar historical storms followed by a scaling of the similar 

historical storm time series. 

15.4.1 Similarity and Storm Resampling 

A methodology developed to identify the historical storms most similar to the 

simulated storm is described in this section.  The method builds on a flexible 

concept of storm dissimilarity.  The smaller the dissimilarity, the more 

representative the historical storm is assumed to be of the simulated storm. 

The dissimilarity criteria are established in order to select a historical storm to 

represent the storm modelled through the J-EVA statistical model.  The 

dissimilarity criteria are inspired by Feld et.al (2015). 

In the following, Ω is used to denote any characteristic storm variable (e.g. 

𝐻𝑚0,𝑝,𝑒𝑞 or 𝑇𝑝̅̅̅) and 𝜔 to denote the corresponding intra-storm variable (𝐻𝑚0 or 

𝑇𝑝). 

Dissimilarity is first calculated for each variable listed below as follows for 

historical storm, 𝑖, and simulated storm, 𝑘: 

𝑑Ω,i,k = |Ω𝐻𝐼𝑆𝑇,𝑖 − Ω𝑆𝐼𝑀,𝑘|  𝜎Ω⁄  (15.9) 

with 𝜎Ω7 being the standard deviation of this variable through all included 

historical storms.  This weight factor is found to provide a reasonable balance 

between the various variables, but it is possible to apply weight factors in 

addition to this, in order to better match for instance significant wave height 

between historical and simulated storms. 

Dissimilarities are calculated for the relevant variable which may be considered 

important in terms of describing the storm evolution.  

Overall storm dissimilarity for simulated storm 𝑘, 𝑑𝑘, is calculated by summing 

up the square of the individual dissimilarities, for each historical storm, i.e.: 

𝑑𝑘
2 = ∑ ∑ 𝑑Ω,i,k

2

𝑣

Ω=1

𝑛

𝑖=1

 
(15.10) 

where Ω = 1: 𝑣 represent the 𝑣 different environmental variables included in the 

dissimilarity criterion.  After having ranked the historical storms in terms of 

(dis)similarity, one of the most similar historical storms is picked randomly 

amongst the least dissimilar ones.  The randomly selected storm is then used 

to represent the intra-storm variability of the modelled storm, after appropriate 

scaling (see next section) is conducted. 

 
7 𝜎𝑀𝑊𝐷   and 𝜎𝑆𝑒𝑎𝑠𝑜𝑛 correspond to half of the standard deviation of the 
corresponding parameters, to account for their periodicity. 
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Typically, the representative storm is selected amongst the 20 most similar 

storms, but the end results are not very sensitive to this number because of the 

applied scaling. 

15.4.2 Historical Storm Scaling 

Having sampled a historical storm amongst the most similar ones, the intra-

storm variation of the historical storm is scaled such that the characteristic 

storm variables of the scaled storm matches those of the simulated storm. 

The proposed scaling methodology assumes that a constant scaling factor 

applies for the entire storm.  As water levels vary around zero, a reference 

level of 10 meters below the sea surface is used in order to avoid division by 

zero. 

Scaling of the selected historical storm variables to generate the time series of 

simulated storms is conducted as follows: 

1. Establish a scaling or correction factor based on the characteristic storm 

variables of the simulated (subscript 𝑆𝐼𝑀) and selected historical storm 

(subscript 𝐻𝐼𝑆𝑇) using the generic formulation: 

𝛼Ω = Ω𝑆𝐼𝑀 / Ω𝐻𝐼𝑆𝑇 (15.11) 

2. Correct the historical storm time series of parameter 𝜔𝐻𝐼𝑆𝑇 to obtain the 

intra-storm variability of the simulated storm, 𝜔𝑆𝐼𝑀.𝑗, as follows (for time 

step 𝑗)): 

𝜔𝑆𝐼𝑀,𝑗 = 𝛼Ω  ∙ 𝜔𝐻𝐼𝑆𝑇,𝑗 (15.12) 

Specifically, for directional variables (wind, wave and current directions, here 

generalised by the notation 𝜃), a rotation rather than scaling is applied: 

𝛼𝜃 = 𝜃𝑆𝐼𝑀̅̅ ̅̅ ̅̅ ̅− 𝜃𝐻𝐼𝑆𝑇̅̅ ̅̅ ̅̅ ̅̅  (15.13) 

The intra-storm variability of the directional variable is then obtained as (at time 

step 𝑗): 

𝜃𝑘 = 𝛼𝜃 + 𝜃𝐻𝐼𝑆𝑇,𝑗 (15.14) 

Typically, peak (or mean) wave direction is used as a co-variate (distributions 

vary with wave direction) and wind and current directions are not simulated in 

the J-EVA statistical model.  In this case, the wave direction rotation factor, 

𝛼PWD, is also used to rotate the current and wind direction time series such that 

wind-wave and current-wave misalignment from the historical storm is 

maintained in the simulated storm. 

For residual water levels, that can also take negative values, the scaling is 

done relative to a minimum level, 𝑊𝐿𝑟𝑒𝑓, that is never surpassed: 

𝑊𝐿𝑗 = (𝑊𝐿𝐻𝐼𝑆𝑇,𝑗 + 𝑊𝐿𝑅𝑒𝑓)
𝑊𝐿𝑆𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ +𝑊𝐿𝑟𝑒𝑓

𝑊𝐿𝐻𝐼𝑆𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅  + 𝑊𝐿𝑅𝑒𝑓
− 𝑊𝐿𝑅𝑒𝑓 (15.15) 

The reference water level could be taken as the water depth at the site, which 

in practice would mean that the water level in the simulated storm would be the 

water level in the historical storm shifted by the difference 𝑊𝐿𝑆𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ −𝑊𝐿𝐻𝐼𝑆𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

Typically, we use 𝑊𝐿𝑅𝑒𝑓 = 10 𝑚, which implies a moderate scaling of the water 

levels beyond the scaling that is coming from the simulated value from the 

long-term model, 𝑊𝐿𝑆𝐼𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅.  
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In addition to the adjustment of the time series values, the time is also scaled in 

order to maintain the number of waves in the storm, and therefore keep 𝐻𝑚𝑎𝑥 

and 𝐶𝑚𝑎𝑥 estimates the same.  The time scaling is performed as follows: 

𝑇𝑖𝑚𝑒𝑆𝐼𝑀 = 𝑇𝑖𝑚𝑒𝐻𝐼𝑆𝑇  ∙  𝛼𝑇02  ∙  𝛼𝜎𝑒𝑞 (15.16) 

with 𝛼𝑇02 and 𝛼𝜎𝑒𝑞 being the scaling factors applicable for 𝑇02  and storm 

duration 𝜎𝑒𝑞, respectively. 

It follows from this scaling method that an exact recovery of the historical storm 

is obtained in the case of an exact match between the simulated and historical 

characteristic storm variables. 

Storms are defined to begin at the last up-crossing of 60% of peak 𝐻𝑚0 prior to 

the peak and end at the first down-crossing of 75% of peak 𝐻𝑚0 after the storm 

peak.  Sea states with 𝐻𝑚0 > 75% of peak 𝐻𝑚0 are contributing to the 

distribution of the maximum wave within a storm.  The extension down to 60% 

of peak 𝐻𝑚0 at the storm build-up is introduced to ensure that the peak wind 

speed is included in the storm.  The sea states thus included are marked as 

filled bars in Figure 15.1.  Storm peaks must as a minimum be separated by 

the specified inter-event time, typically between 18 and 36 hours for extra-

tropical cyclones, to be treated as separate events. 

15.5 Heights and Periods of Individual Waves 

The methods described in the previous sections define a way of developing 

time series of the slowly varying parameters (𝐻𝑚0, 𝑇𝑝 etc.) in each simulated 

storm, whereby we obtain the long-term distribution of the slowly varying 

parameters. From these time series we can easily derive the long-term 

distribution of individual wave and crest heights.  

The individual wave and crest heights are stochastic variables conditional on 

the properties of the underlying sea state, and their distributions are typically 

termed the short-term distributions. We use Monte Carlo simulation to fold 

these short-term distribution with the long-term distribution of the underlying 

slowly varying sea state parameters. This Monte Carlo simulation involves 

sampling a maximum short-term response for every sea state in every 

simulated storm.  

The Forristall crest height distribution is used here as an example of how to 

sample the hourly maximum of a short-term response. The inverse cumulative 

distribution function of the hourly maximum Forristall crest height is given by: 

 

𝐹−1(𝜂𝑚𝑎𝑥) = 𝐻𝑚0𝛼 (−ln(1 − 𝑃
1
𝑁))

1
𝛽

 (15.17) 

 

where: 

 

𝑃 Non-exceedance 
probability 

 

𝑁 Number of waves in sea 
state 

(≈ 3600𝑠/𝑇02 for a one-hour sea state) 



 

  150 

𝛼 Distribution shape √2/4 + 0.2568𝑆1 + 0.0800𝑈𝑟 (Forristall Crest) 

𝛽 Distribution shape 2 − 1.7912𝑆1 − 0.5302𝑈𝑟 + 0.2824𝑈𝑟
2 (Forristall Crest) 

𝑆1 =
2𝜋

𝑔

𝐻𝑚0

𝑇01
2  

𝑈𝑟 =
𝐻𝑚0

𝑘1
2𝑑3

 

𝑘1 Wave number for 
frequency  

1/𝑇01 

𝑑 Water depth  

The Monte Carlo analysis simply consists in sampling the non-exceedance 

probability 𝑃 randomly and independently for every sea state and calculate the 

corresponding 𝜂𝑚𝑎𝑥. Note that the short-term distribution varies from sea state 

to sea state as the parameters 𝐻𝑚0, 𝑇01, 𝑇02 and the water depth may vary (the 

latter due to effects of tide and surge). The long-term distribution of annual 

maximum crest height and corresponding extreme value estimates are derived 

by considering only annual maximum crest height, as explained in Eq. (15.5). 

Crest height relative to a fixed datum are obtained by adding tide and surge 

values for each sea state prior to extraction of annual maxima. 

15.5.1 Associated Wave Periods 

The period of individual maximum waves (𝑇𝐻𝑚𝑎𝑥) will vary because of varying 

sea state characteristics (variability of 𝑇𝑝 given 𝐻𝑚0) but also because of the 

randomness of the sea state itself. The most probable period, given a sea state 

(wave spectrum), is well approximated by the so-called linear new wave, [45], 

but there is obviously some random variability around this most probable value. 

This latter variability has been combined (convolved) with the random 

variability of the sea state characteristics by simulating linear random wave 

trains from a frequency spectrum for the sea states giving rise to the annual 

maximum waves and extracting the period of the highest wave from each 

simulation. Any frequency spectrum can be used for this, but the JONSWAP 

spectrum is typically adopted.  

To obtain stable empirical conditional distributions of the wave periods many 

simulated sea states are required. 
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16 Appendix F: J-EVA – Statistical 

Model 

This document describes the theory and methodology of the DHI J-EVA 

statistical model. The methodology is based on the work presented in 

Hansen et al. (2020)[46]. 

The J-EVA (Joint-Extreme Values Analysis) statistical model is a tool for 

making extreme value analysis of a set of parameters with a-priori unknown 

joint dependence properties.  Application of J-EVA requires as input a set of 

independent ‘events’ with concurrent values of the parameters being modelled. 

A typical example is storm peak significant wave heights, associated wave 

period, storm surge, wind speed, but the tool is generic and can model any 

kind of stochastic non-discrete parameters, as long as they fulfil the 

requirements of independence and identical distribution (iid). The input data 

may come from measurements or numerical hindcast models or a combination 

hereof, and the usual requirements to data consistency and quality also apply 

here. 

Covariates may be defined if a-priori knowledge about variations in extremal 

properties is suspected. Typical examples of covariates are direction and/or 

season. Non-parametric smooth variations with covariate(s) are implemented 

using a B-spline technique (see Section 16.3 for details) and periodicity (as is 

the case for both direction and season) is possible. The use of covariates also 

implies that the requirement of identical distribution only applies for random 

variables sharing the same covariates (as for instance waves from the same 

direction occurring during the same time of year). It is not recommended to 

apply the model across discontinuous (abrupt) covariate variations. Extreme 

value models incorporating covariates are called non-stationary extreme value 

model in the statistical literature. 

The statistical uncertainty due to the typically limited sample size of historical 

extremes is estimated by the tool and may be propagated through to the end 

results. A Bayesian Markov Chain Monte Carlo (MCMC) technique is adopted 

(see Section 16.4 for details). 

16.1 Model components 

The J-EVA statistical model contains the following model components. 

• Marginal models describing the marginal distribution of each parameter 
(i.e., the distribution of the parameter without considering the values of 
the remaining parameters) 

• Rate of occurrence describing how often a parameter (event) occurs 

• Conditional extremes model describing the distribution of other 
parameters conditional on a selected parameter being extreme 

Each of the components is detailed below. 
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16.2 Marginal models 

Marginal (univariate) distributions are fitted to each stochastic variable in turn. 

A combination of a gamma (Γ) distribution, modelling the bulk of the data, and 

Generalized Pareto (GP) tails modelling the distribution tails above a threshold 

is used for the marginal distributions. Whenever relevant, both the upper and 

lower tails are modelled with a GP distribution, the lower tail basically being a 

GP tail fitted to the reversed data below the low threshold. 

𝑃(𝑥) =

{
  
 

  
 𝑃Γ(𝑢1|𝛼, 𝜇) {(1 + 𝜉1

𝑢1 − 𝑥

𝜁1
)
−
1
𝜉1
 } , 𝑥 < 𝑢1

𝑃Γ(𝑥|𝛼, 𝜇) , 𝑢1 ≤ 𝑥 ≤ 𝑢2 

1 − (1 − 𝑃Γ(𝑢2|𝛼, 𝜇)) {(1 + 𝜉2
𝑥 − 𝑢2
𝜁2

)
−
1
𝜉2
} , 𝑥 > 𝑢2

 

(16.1) 

The gamma distribution is given by: 

𝑃Γ(𝑥|𝛼, 𝜇) =
1

Γ(𝛼)
γ (𝛼,

𝛼

𝜇
𝑥) 

(16.2) 

where Γ(𝛼) is the complete gamma function and 𝛾 (𝛼,
𝛼

𝜇
𝑥) is the lower 

incomplete gamma function. 

The model parameters defining the marginal distributions are: 

𝑎 gamma distribution shape parameter 

𝜇 gamma distribution mean parameter (gamma shape multiplied with 

gamma scale parameter)8 

𝜉1 GP shape parameter for lower tail 

𝜁1 GP scale parameter for lower tail9 

𝜉2 GP shape parameter for upper tail 

𝜁2 GP scale parameter for upper tail 

The thresholds, at which the GP tails take over, are set as quantiles in the 

gamma distribution of the bulk data, i.e. 

𝑢1 = 𝑃Γ
−1(𝜅1) 

𝑢2 = 𝑃Γ
−1(𝜅2) 

(16.3) 

where 𝜅 is a constant (covariate-free) non-exceedance probability.  Threshold 

uncertainty is included ensemble averaging results over a range of values for 

𝜅1 and 𝜅2.  These are sampled from a uniform distribution over a pre-set 

quantile interval. 

The model parameters are estimated in a sequential way; first the gamma 

distribution is fitted to all data, then the threshold is calculated from the fitted 

gamma distribution and sampled threshold non-exceedance probability and 

 
8 The distribution parameters are practically uncorrelated with this formulation of 
the gamma distribution.  This improves mixing of the MCMC chain 
9 As for the gamma distribution, an orthogonal parameterization has been used, 
where adjusted scale parameter, 𝜈 = 𝜁(1 + 𝜉), is sampled. For the ease of 

interpretation, the results are, however, presented for the scale parameter 𝜁. 
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finally the GP lower and upper tails fitted independently to the data sample 

below 𝑢1/above 𝑢2 respectively.  The log-likelihood functions are: 

ℓΓ,𝑗(𝒛|𝒃) = −∑{(𝛼 − 1) ln 𝑧𝑖𝑗 −
𝛼

𝜇
𝑧𝑖𝑗 − lnΓ(𝛼) − 𝑎(ln 𝜇 − ln𝛼)}

𝑛

𝑖=1

 , 

ℓ𝐺𝑃𝐿𝑇,𝑗(𝒛|𝒃) = − ∑ {ln𝜁1 + (1 +
1

𝜉1
) ln(1 +

𝜉1
𝜁1
(𝑢1 − 𝑧𝑖𝑗))}

𝑖: 𝑧𝑖𝑗<𝑢1

 

ℓ𝐺𝑃𝑈𝑇 ,𝑗(𝒛|𝒃) = − ∑ {ln 𝜁2 + (1 +
1

𝜉2
) ln(1 +

𝜉2
𝜁2
(𝑧𝑖𝑗 − 𝑢2))}

𝑖: 𝑧𝑖𝑗>𝑢2

 

(16.4) 

16.3 Rate of occurrence 

The occurrence of events is considered a Poisson process and the Poisson 

annual rate of occurrence 𝜌 is required for estimation of annual non-

exceedance probabilities. In the covariate-free case, 𝜌 is simply estimated by 

the total number of historical events divided by the length of the historical data 

series in years.  In the case of covariates, the covariate domain is divided into 

𝑚 bins of constant area, Δ, and the rate the log-likelihood function of 𝜌 

approximated by [47] 

ℓ𝜌,𝑗(𝒛|𝒃) =∑𝑐𝑘 ln(𝜌(𝑘Δ))

𝑚

𝑘=1

− Δ∑𝜌(𝑘Δ)

𝑚

𝑘=1

 
(16.5) 

where 𝑐𝑘 is the number of threshold exceedances in bin 𝑘. 

16.4 Conditional extremes 

The conditional extremes model by Heffernan & Tawn (2004), model 

distributions of parameters conditional on one parameter being extreme. This is 

useful for modelling for instance the distribution of spectral peak period or wind 

speeds when the significant wave height is extreme. 

The original conditional extremes model proposed by Heffernan & Tawn makes 

use of probability integral transform to marginal distributions with standard 

Gumbel distributions.  This introduces asymmetry in the marginal distributions 

and makes modelling of negatively dependent variables somewhat more 

complicated than positively dependent variables.  Keef, Papastathopoulos, & 

Tawn (2013) propose a modification of the model replacing the Gumbel 

margins by Laplace margins whereby both positive and negative tails become 

exponential.  This modification to the original model is applied in J-EVA. 

The marginal distributions are defined over the entire range from the ‘lower’ 

end-point of the lower tail to the upper end-point of the upper tail by the 

combined Gamma-GP model (Eq. (16.1)). 

Probability integral transformation to Laplace margins is given by: 

𝑌𝑗 = {
ln(2P (𝑋𝑗)) , P(𝑋𝑗) < 0.5

− ln (2(1 − P(𝑋𝑗)))  P(𝑋𝑗) ≥ 0.5
 

(16.6) 
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The Heffernan & Tawn (2004) conditional distribution for a set of variables with 

Laplace margins simplifies into one function for both positive and negative 

dependence (Keef, Papastathopoulos, & Tawn, 2013): 

(𝑌𝑗𝑐|𝑌𝑗 = 𝑦) = 𝑎𝑗𝑦 + 𝑦
𝑏𝑗𝑊𝑗 

 𝑗, 𝑗𝑐 = 1,2, 𝑗𝑐 ≠ 𝑗 
(16.7) 

with the random variable, 𝑌𝑗𝑐 , being conditioned on the random variable, 𝑌𝑗. We 

use notation 𝑌 to indicate that these variables have Laplace margins. 𝑊𝑗 is a 

random variable from an unknown distribution.  We introduce the additional 

parameters, 𝑚 and 𝑠 and assume that 𝑍𝑗 = (𝑊𝑗 −𝑚𝑗)/𝑠𝑗 follows a common 

distribution independent of covariates.  Hence Eq. (16.7) may be written as:  

(𝑌𝑗𝑐|𝑌𝑗 = 𝑦) = 𝑎𝑦 + 𝑦
𝑏𝑗(𝑚𝑗 + 𝑠𝑗𝑍𝑗), 

𝑗, 𝑗𝑐 = 1,2, 𝑗𝑐 ≠ 𝑗 
(16.8) 

The negative log-likelihood for pairs of the sample {𝑦𝑖1, 𝑦𝑖2} is given by: 

ℓ𝐶𝐸,𝑗 = ∑

{
 

 
ln 𝑠𝑗𝑦𝑖𝑗

𝛽𝑗 +
(𝑦𝑖𝑗𝑐 − (𝑎𝑗𝑦𝑖𝑗 +𝑚𝑗𝑦𝑖𝑗

𝑏𝑗
))
2

2 (𝑠𝑗𝑦𝑖𝑗
𝛽𝑗)

2

}
 

 
,

𝑖,𝑥𝑖𝑗>𝜓𝑖𝑗(𝜃𝑖,𝜙𝑖𝜆𝑗 )

 

𝑗, 𝑗𝑐 = 1,2, 𝑗𝑐 ≠ 𝑗 

(16.9) 

𝑢𝐶𝐸,𝑗 is the threshold with non-exceedance probability, 𝜆𝑗 , adopted for the 

conditional extremes model, meaning that the model is fitted to pairs of 

variables for which the non-exceedance probability of the conditioning variable 

exceeds 𝜆𝑗.  This threshold is set independently of the Generalized Pareto 

threshold 𝑢2, and may be lower than that since the distribution below the GP 

threshold 𝑢2 is defined by the gamma distribution. 

Conditional extremes model threshold uncertainty is included by sampling 𝜆𝑗 

from a uniform distribution over a pre-set quantile interval followed by 

ensemble averaging results over several different values of 𝜆𝑗. 

Residuals, 𝑟, are calculated from the estimated model parameters as: 

𝑟𝑖𝑗 =
1

𝑠̂𝑗
((𝑦𝑖𝑗𝑐 − 𝑎̂𝑗𝑦𝑖𝑗)𝑦𝑖𝑗

−𝑏̂𝑗 − 𝑚̂𝑗) (16.10) 

Multidimensional dependencies are modelled through the residuals.  For each 

parameter, 𝑗 = 2,… , 𝑛, with 𝑛 being the total number of variables modelled, the 

residual is calculated for each event 𝑖 leading to a vector of residuals for each 

event 𝒓𝑖 = [𝑟𝑖2, … , 𝑟𝑖𝑛].  These 𝑛 vectors of residuals are later used for 

simulating data in the model. 

It then follows that the Laplace marginal value of parameter 𝑗 conditioned on 

parameter 1 is given by 

(𝑌𝑗|𝑌1 = 𝑦) = 𝑎𝑗𝑦 + 𝑦
𝑏𝑗(𝑚𝑗 + 𝑠𝑗𝑟𝑗) (16.11) 

The probability transform in Eq. (16.6) is inversed to get the non-exceedance 

probabilities of the associated parameters.  The magnitude of each associated 

parameter is then calculated from its marginal distribution. 
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16.5 Covariates 

Penalised B-splines are used to model the parameter variation with covariate.  

The basic idea of penalised B-splines, originally introduced by Eilers & Marx 

(1996), is to use B-splines with a moderately large number of evenly-spaced 

knots and control the parameter smoothness by a variance penalty factor, 𝜏2. 

B-spline regression is started by dividing the domain over which to fit a curve 

into 𝑛′ equal intervals by specifying the position of 𝑛′ + 1 knots.  B(asis)-splines 

are then constructed as sequences of polynomial functions of degree, 𝑞, 

connected the knots.  Each B-spline is positive in a range spanning 𝑞 + 2 

knots, and zero elsewhere.  Curve-fitting using B-splines consists in finding the 

coefficients, 𝛽𝑖=1:𝑛′+𝑞, with which to multiply the B-splines.  The function value 

may be expressed as the linear combination of the spline basis, 𝐵, and the 

coefficients. 

𝑓(𝑥) = ∑ 𝛽𝑖𝐵𝑖(𝑥)

𝑛′+𝑞

𝑖=1

   (16.12) 

Penalised B-splines (P-splines) are an extension of B-splines in which a 

penalty is put on the differences between adjacent 𝛽-coefficients.  The degree 

of roughness is controlled by a variance parameter, 𝜏2, and the difference 

penalty matrix, 𝐊.  For first order differences, the difference matrix is given by: 

𝐊 =

[
 
 
 
 
1 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 1 ]
 
 
 
 

   (16.13) 

The basis of B-splines and the effect of roughness penalty, introduced through 

𝜏2, is illustrated in Figure 16.1. 

Both directional and seasonal variations are periodic.  Periodic smoothing is 

introduced by ‘wrapping’ the spline at the ends.  Specifically, the last 𝑞 basis 

splines are merged with the first 𝑞 splines and the total number of basis 

functions reduced by 𝑞.  The difference penalty matrix is wrapped similarly, i.e., 

𝐊 is now: 

𝐊 =

[
 
 
 
 
 
2 −1 … −1
−1 2 −1

−1 2 −1
⋮ ⋱ ⋱ ⋱

−1 2 −1
−1 −1 2 ]

 
 
 
 
 

   (16.14) 

B-splines are extendable to higher dimensions through tensor-product B-

splines (see e.g.[48]). The multidimensional surface is now described by 

tensor-products of B-splines. The tensor-product B-splines in two dimensions 

are illustrated in Figure 16.2. The coloured shapes underlying the surface are 

the individual tensor-product B-splines scaled by the respective coefficients. 

The total number of 𝛽-coefficients to estimate is now (𝑛𝜃
′ + 𝑞) × (𝑛𝜙

′ + 𝑞). 

Different number of knots and different penalty factors may apply for each 

dimension. However, as Figure 16.2 also illustrates, large roughness penalty in 

one dimension may influence the smoothness in other dimensions. This 

indicates that roughness penalty should be determined for all dimensions 

simultaneously. 
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Figure 16.1 Quantile regression analysis for some fictive seasonally 

varying parameter, illustrating the components of P-splines 

The coloured curves show the individual B-splines each multiplied by 

its respective b-coefficient.  Quadratic B-splines (q=2) and first order 

penalty have been used. 
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Figure 16.2 Quantile regression analysis, illustrating the components of 

tensor-product P-splines in two dimensions. 

The coloured surfaces show the individual tensor-product B-splines 

each multiplied by its respective 𝛽 -coefficient. Quadratic B-splines 

(𝑞 = 2) and first order penalty have been used. 

Generalised linear array models 

The penalised B-spline approach outlined above requires evaluation 𝒙 = 𝑩𝜷, 

where 𝑩 is a (sparse) 𝑚× 𝑛 matrix where 𝑚 is the total number of data points 

irregularly spaced within the covariate domain, and 𝑛 the total number of knots 

𝑛 = 𝑛1 × 𝑛2. 𝜷 is a 𝑛 × 1 vector of spline coefficients. 

However, if we can organise our irregularly spaced data onto a regular 

𝑚1 ×𝑚2 grid, we may reduce the problem size substantially using Generalized 

Linear Array Models (GLAM) ([49],[50])These provide a computationally and 

memory-efficient framework for combining tensor product B-splines with array 

data and have been used in a very similar application in the past ([47]) 
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In fact, the problem now reduces to evaluation of 𝑩1ℳ(𝜷)𝑩𝟐
′ , where ℳ(𝜷) is a 

𝑛1 × 𝑛2 reordering of 𝜷. 𝑩1 and 𝑩2 are size 𝑚1 × 𝑛1 and 𝑚2 × 𝑛2 respectively. 

16.6 Parameter estimation 

Distribution parameters for the model components described in Section 16.1 

are defined by the 𝜷 spline coefficients and parameter estimations thus 

consists in estimating the appropriate values of 𝜷. 

A Bayesian approach is applied to estimate the 𝛽-coefficients. The approach 

builds on work in[51], [52] and [53] 

Priors 

Spline Model 

The prior for 𝛽 up to a constant of proportionality is given by, [53] 

(𝜷|𝜏2) ∝
1

(𝜏2)
𝑟𝑘(𝑲)
2

exp(−
1

2𝜏2
𝜷𝑇𝑲𝜷) (16.15) 

where 𝑟𝑘(𝑲) is the rank of the penalty matrix, 𝑲. 

The variance parameter 𝜏2 is estimated through 10-fold cross-validation. 

Cross-validation is a robust and simple technique to optimise the predictive 

performance of a model, i.e., its capability of predicting the likelihood of a data 

sample that was not used to estimate the model. In this way the right 

complexity of the model is achieved – it is neither too simple nor is it over-fitting 

to the data. In this case, too simple a model would be too smooth and thereby 

ignore covariate effects that were truly present while a too complicated model 

would be exaggerating covariate effects by trying to adopt to the individual 

extreme events. 

The 10-fold cross-validation consists in, for a given choice of 𝜏2, to fit the 

model to 90% of the data (training) and then calculate the likelihood of the 

remaining 10% of the data(validation). This is repeated 10 times such that all 

data points have been used one time for validation and the 10 likelihoods are 

then summed. This whole procedure is then repeated for a new choice of 𝜏2. 

Estimation of all values of 𝜏2 at once is not feasible as the model has as many 

values of 𝜏2 as the number of model parameters times the number of 

covariates. Instead, a sequential procedure has been adopted: 

1. Values of 𝜏2 for the Γ-distribution are estimated by: 

- Estimate an appropriate global value by varying all  𝜏2 at the same 
time 

- Estimate a ratio between the shape 𝛼 and mean 𝜇 by varying 
these separately (but using same value for season and direction) 

- Estimate the ratio between season 𝜙 and direction 𝜃, using the 
relative ratio between 𝛼 and 𝜇 as above 

- Repeat first sub-step but now using the relative ratios between 𝛼, 
𝜇, 𝜙 and 𝜃. 

2. The Γ-distribution is now fitted using the most appropriate combination of 

𝜏2 estimated above and together with appropriate quantile thresholds 𝜅1, 𝜅2 
this provides the non-stationary threshold above which the GP tail is 

assumed. For each GP tail, the steps a-d are followed though now with the 

ratio of GP shape 𝜉 to scale 𝜁 estimated under second sub-step above. 
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Figure 16.3 show an example of the results of a cross-validation, in this case 

for the upper tail of the 𝐻𝑚0,𝑝,𝑒𝑞 variable. The rows in the plot show results of 

cross-validation steps a to d. Upper and lower subplots show the summed log-

likelihood score on the 10 validation sets as against the prescribed value of 𝜏2. 
Row 2 and 3 show colour-scaled plots of the summed log-likelihood score for 

the tested combinations of 𝜏𝑥
2 (along x-axis) and 𝜏𝑦

2 (along y-axis). Yellow 

indicates higher cross-validation score (better predictive performance). The 

right-hand plots show the same results as the left-hand plots but smoothing the 

results across neighbouring 𝜏2 combinations. Results in left hand plots are 

normally used. The black dots show random combinations sampled from the 

probability distribution that can be constructed from the summed log-likelihood 

score. The black crosses indicate the optimum point. 

 

Figure 16.3 Example of cross-validation for the upper GP tail of the 

distribution of 𝑯𝒎𝟎,𝒑,𝒆𝒒. 

See explanation in text for details 
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Marginal Distributions 

In addition to the priors on the spline coefficients 𝜷, we may also specify priors 

for the values of the actual distribution parameters or the support ranges. In the 

case of a negative GP shape parameter, the support range for the GP 

distribution has an upper end-point 𝑋𝑚𝑎𝑥 given by (see Section 16.2 for 

definition of parameters) 

𝑋𝑚𝑎𝑥 = −
𝜁

𝜉
+ 𝑢 (16.16) 

The distribution tail will asymptotically approach this limit. If a physical absolute 

upper limit of a parameter is known, it may be introduced in the extreme value 

analysis by setting the upper end-point of the GP support range to be this limit. 

Proposal generation 

The posterior distributions are approximated using Markov Chain Monte Carlo 

methods with a Metropolis-Hastings (MH) sampling scheme. The MH scheme 

progresses as follows (for one model component): 

1. Define start values10, 𝜷(0) Set iteration number 𝑖 = 1. 

2. For each model parameter; Propose candidate coefficients, 𝜷∗ from a 

multivariate normal distribution 𝑀𝑉𝑁(𝜷(𝑖−1), 𝐒). Two approaches are 

followed to estimate the covariance matrix 𝐒 
- Following the approach of Rue ([54])also adopted by Lang and 

Brezger (/13/), proposals are drawn from a MVN with covariance 

matrix 𝐒 = (𝐁𝑇𝐁+
1

𝜏2
𝐊)

−1
 

- Following Roberts and Rosenthal ([53])the empirical covariance 
matrix is estimated, and proposals drawn from a MVN with 
covariance matrix 

𝐒 = (1 − 𝜖)22.382
Σ𝑛
𝑑
  + 𝜖2 × 0.01

𝐼𝑑
𝑑

 (16.17) 

where Σ𝑛 is the empirical covariance matrix of size 𝑑 × 𝑑 estimated 
from the markov chain. The latter term 0.01𝐼𝑑/𝑑 is random noise and 
the small constant 𝜖 is used to control the degree of random noise in 
the proposal. Roberts and Rosenthal use 𝜖 = 0.05 and we adopt the 
same value here. 

The latter approach requires an estimate of the covariance matrix, which 

can only be obtained from running the MCMC. Hence, approach a. is first 

run for a large number of iterations. As approach b. turns out to be 

computationally faster, the MCMC algorithm has been set to switch to this 

approach after a number of iterations. Multivariate normal random samples 

are generated from a Cholesky decomposition 𝐋 of the covariance matrix 𝐒. 

Hence 

𝜷∗ = 𝜷(𝑖−1) + 𝐋 × 𝒖 (16.18) 

where 𝒖 is a vector of standard normal random (uncorrelated) samples. 

3. Accept 𝜷∗ with probability: 

 
10 Start values for spline coefficients are made by fitting constant models through 
(seasonally-directionally) binned data, followed by fitting a smoothing spline 
through the estimated parameter values 
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𝒜(𝜷(𝑖−1), 𝜷∗)

= min {1,
ℒ(𝒛|𝜷∗)𝜋(𝜷∗|(𝜏2)(𝑖−1))𝜋((𝜏2)(𝑖−1))

ℒ(𝒛|𝜷(𝑖−1))𝜋(𝜷(𝑖−1)|(𝜏2)(𝑖−1))𝜋((𝜏2)(𝑖−1))
} 

(16.19) 

4. Steps 2-3 are repeated for each model parameter after which the iteration 

counter i is incremented by one 

Full model inference 

The procedure detailed above is valid for one single model component (gamma 

distribution bulk, GP tail, Conditional extremes model). However, the full model 

requires estimation of all components in a hierarchical order as follows: 

Parameter 1: Gamma distribution bulk → GP tails 

}
 
 

 
 

→Conditional Extremes Model 
Parameter 2: Gamma distribution bulk → GP tails 

… 

Parameter n: Gamma distribution bulk → GP tails 

This is achieved as follows: 

1. For each input variable (e.g., 𝐻𝑚0, 𝑇𝑝, …, etc); 

- Fit the gamma distribution to all events and save several 
independent samples from the chain. Also fit the rate of 
occurrence model for the primary parameters of interest that are 
later used as conditioning parameters. 

- At each stored sample of the gamma distribution of bulk data, 
sample a threshold non-exceedance probability, compute the 
threshold, run a GP chain, and save an appropriate number of 
samples of this after burn-in. Both high and low tail are estimated 
independently in this way. 

This procedure results in n samples (n = number of Gamma samples times 

number of GP samples) of each marginal distribution. 

2. Fit all conditional extremes models to the marginal distribution samples. 

The CE models are fitted simultaneously in order to achieve vectors of 

residuals emanating from the same historical events, whereby 

multidimensional dependencies can be carried over into storm simulations 

(see also Section 16.4). The conditional extremes model threshold 𝜓 

uncertainty is accounted for by updating the threshold non-exceedance 

probability 𝜆 for each update of the GP tail threshold in the marginal 

models. The iteration procedure for each 𝜆 update is as follows: 

- Sample a threshold non-exceedance probability and identify the 
events above this in the conditioning distribution. 

- Fit the CE model across all GP tail updates and to each variable in 
turn. The CE chain is run for several iterations for each GP tail 
update, but only the last iteration is stored. Also, the residuals are 
stored for the last iteration. By running this procedure over all 
variables in turn, a matrix of residuals is built for each stored CE 
iteration with size number of threshold exceeding events times 
number of variables. 

The above procedure results in an equal number of samples of the marginal 

and conditional models, the latter with associated residuals. Several thresholds 

in both marginal tails and conditional extremes are incorporated in this sample, 

thus accounting for some of the threshold uncertainty. Equal weight is thereby 

given to all possible thresholds within the assumed plausible range. It is our 

experience with constant models that this is a reasonably good approximation 

for most data sets and superior to a constant threshold approach. 
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Proper implementation of the MCMC approach ensures that the final sample of 

model parameters thus obtained represents a sample from the posterior 

distribution of the model parameters. The uncertainty related to the 

extrapolation from a limited input data sample to events with a very low 

exceedance probability is reflected in this posterior distribution. 

An overview of the different distribution parameters to be determined for each 

marginal and conditional extremes distribution is given in Table 16.1. The 

threshold quantiles are specified as constants and do therefore not vary with 

covariates. This means that a certain threshold for example for a GP tail model 

is taken as a constant (across covariate space) quantile in the underlying 

Gamma distribution. But as the Gamma distribution itself is non-stationary with 

respect to covariates, the actual threshold for the GP model will also vary with 

covariates. The quantiles are sampled uniformly from specified intervals. 

 

Table 16.1 Overview of model parameters 

Description Symbol Type11 

Rate of occurrence 𝜌 Tensor-Product B-spline 

Γ distribution shape  𝛼 Tensor-Product B-spline 

Γ distribution mean  𝜇 Tensor-Product B-spline 

GP low tail threshold quantile  𝜅1 Constant 

GP low tail shape parameter 𝜉1 Tensor-Product B-spline 

GP low tail scale parameters 𝜁1 Tensor-Product B-spline 

GP high tail threshold quantile  𝜅2 Constant 

GP high tail shape parameter 𝜉2 Tensor-Product B-spline 

GP high tail scale parameters 𝜁2 Tensor-Product B-spline 

CE threshold quantile 𝜆 Constant 

CE a parameter 𝑎 Tensor-Product B-spline 

CE b parameter 𝑏 Tensor-Product B-spline 

CE mean parameter 𝑚 Tensor-Product B-spline 

CE standard deviation parameter 𝑠 Tensor-Product B-spline 

16.7 Simulation and return value estimation 

Due to the complexity of the model and the need to ensemble average over the 

posterior distribution sample of the model parameters, return values are 

obtained by simulating events in the model. Popular speaking, such a 

simulation consists in sampling a very large number of events whereby the 

sought return value can be ‘read off’ as the i’th largest event in the simulated 

sample. The rank i depends on the simulation length (numbers of years 

simulated) and the return period in question.  

Combined with an appropriate event (storm) model this procedure also allows 

for swift convolution of the long-term distribution of the slowly varying 

parameters with a short-term distribution of a certain type of response. The 

 
11 In the case of a constant (covariate-free) model, all parameters are constant. 
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classical example in this respect is the convolution of the long-term distribution 

of sea states with the short-term distribution of maximum wave crest heights to 

obtain the long-term distribution of the maximum crest elevation. 

The simulation procedure followed to simulate one year of events is detailed 

below. 

1. Sample a particular iteration from the MCMC chain 

2. Sample the number of events from a Poisson distribution with arrival rate 

corresponding to the average annual number of events in the input data set 

3. Sample non-exceedance probability for all events  

4. For a non-stationary model, assign covariates to each event through the 

fitted non-stationary rate function for the conditioning variable 

5. Calculate the magnitude of the conditioning variable for all events from its 

marginal non-stationary distribution 

6. Resample events from the data set for all events with non-exceedance 

probability below the conditional extreme model quantile threshold \lambda 

as the conditional extremes model is only applicable for conditioning events 

with non-exceedance probability above 𝜆. In practice, the resampling is 

done by searching for the nearest event in the data set in terms of all 

covariates and magnitude 

7. Magnitudes of conditioned parameters 𝜂2, … , 𝜂𝑛 above the conditional 

extreme model quantile threshold 𝜆 are modelled through the conditional 

extremes model. A vector of residuals 𝒓𝑖 = [𝑟𝑖2, … , 𝑟𝑖𝑛] emanating from the 

same event in the data set is sampled for each event from the stored 

residuals for the particular MCMC iteration. The Laplace marginal values 

for all conditioned parameters calculated from eq. (16.11) and the marginal 

distributions applied to convert the Laplace marginal values to the physical 

values. 

Return values with long recurrence period requires many years to be 

simulated. Denoting the number of years n and the required return period 𝑇𝑟, 

reasonably converged estimates of return values are obtained when 𝑛 ≥ 100𝑇𝑟. 
In other words, a 100-year return value requires simulation of around 10,000 

years. 

Return values are usually reported as quantiles in the distribution of the annual 

maximum. The annual maximum distribution is constructed from the simulation 

by only retaining the largest simulated value per year and the relationship 

between quantile and return period given by: 

𝑞𝑟 = exp(−
1

𝑇𝑟
) (16.20) 

The return values hereby obtained reflect the uncertainty in the extreme value 

distributions and larger uncertainty will inflate the return values especially for 

return periods longer than the duration of the historical input data sample. This 

is achieved by integrating across the posterior distribution of the model 

parameters (effectively achieved by sampling amongst the MCMC iterations 

when simulating events in step 1). This type of distribution is also known as the 

posterior predictive annual maximum distribution.   

Conditional distributions of associated parameters are readily obtained from 

the simulation of conditioned parameters. 
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