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Nomenclature

| Abbrev.

‘ Unit

DHI)

Variable

Atmosphere

Wind speed @ 10 m height WSi10 m/s

Wind direction @ 10 m height WD1o °N (clockwise from)
Air pressure @ mean sea level PwmsL hPa

Air temperature @ 2 m height Tair,2m °C

Relative humidity @ 2 m height RH2m -

Downward solar radiation flux SR W/m?

Visibility ViIZ km

Ocean

Water level WL mMSL

Current speed Cs m/s

Current direction CD °N (clockwise to)
Water temperature Twater °C

Water Salinity Salinity -

Water density Pwater Kg/m?3

Waves

Significant wave height Hmo m

Peak wave period Tp S

Mean wave period Toa s

Zero-crossing wave period To2 s

Peak wave direction PWD °N (clockwise from)
Mean wave direction MWD °N (clockwise from)
Direction standard deviation DSD °
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Executive Summary

DHI)

Energinet Eltransmission A/S (Energinet) requested a metocean site
conditions assessment to form part of the site conditions and to serve as
the basis for the design of the Energy Island North Sea (EINS).

This study provides detailed metocean conditions for EINS and establishes a
metocean database for the energy island and the related offshore wind farm
(OWF) area development area around the island as shown in Figure 0.1.

Table 0.1 provides a summary of metocean guidelines, EVA methodology, and
analyses of Part B (island area, this report), and Part C (OWF area).

Newcastle upon Tyne

United Kingdom

Leed:s

Manchester
blin

100 km
50 mi

Skien

Goteborg

Denmark

Figure 0.1  Location of the Energy Island North Sea, the related offshore
wind farm development area, and measurement stations
The hindcast database (light blue polygon) entails: Waves: EINS-
SW-CFSR, Ocean: EINS-SW-CFSR, Atmosphere: Global-AT-CFSR.

Table 0.1 Summary of metocean guidelines, EVA methodology, and

analyses

Analyses concern normal and extreme conditions included at each
analysis point. The Part A report, [1], forms the data basis for Part B
(Island) and Part C (OWF) analysis reports.

Part B (Island)

Part C (OWF)

Extremes - methodology

Points: EINS-1-5
J-EVA (directional)

Points: OWF-1-8
T-EVA (omni only)

Other Metocean Conditions

Analyses - Wind v +
Analyses - Water Level v v
Analyses - Current v v
Analyses - Waves v v
Wind-Wave misalignment v v

v v
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<

Summary of data basis, Part A, [1]

All metocean hindcast model data covered the period 1979-01-01 to
2022-10-01 (43+ years) at 30-min interval. Wind and other atmospheric data
were adopted from CFSR (rainfall data from ERAS), while a local hindcast 2D
hydrodynamic model, HDgns, was set up to simulate water levels and currents,
and a dedicated spectral wave model SWEens, was set up to simulate waves.
3D currents, water temperature and salinity were adopted from the DHI United
Kingdom and North Sea 3-dimensional (HDuknssp) hydrodynamic model.

The hindcast data was compared to a comprehensive set of local wind, water
level, current, wave and CTD (sea temperature and salinity) measurements
(2021-11-15 to 2022-11-15.) supplemented by long-term measurements from
other stations in the North Sea and found to be accurate and applicable for
assessments of normal and extreme metocean conditions at EINS.

Recommendations for wind profiles/averaging, current profiles, and short-term
wave distributions were established based on the local measurements.

Sea level rise (SLR) was estimated at +0.8 m by the year 2113 (end of
lifetime). It is recommended that designers consult Energinet for any given
design requirements, to decide on the safety policy and procedure with respect
to relevant climate change effects. A (potentially conservative) guideline on
climate change effects on wind and waves is suggested in NORSOK, [2].

The metocean hindcast data developed for EINS covers the entire light blue
polygon in Figure 0.1. It entails all hindcast wave, ocean, and atmospheric
variables and was provided to Energinet on a hard disk in MIKE dfs file
formats. The dfs files can be read using either the Python MikelO? or the DHI-
MATLAB-Toolbox? open source libraries available at GitHub.

Normal conditions

At EINS the mean wind speed is 8.8 m/ s and mean significant wave height is
1.9 m (see Figure 0.3) with peak wave periods most frequently between 4 — 8
s. The wave conditions are characterized by a mix of swell from the North
Atlantic and local wind-sea predominantly from the west, with a dominance of
extremes from the northwest, see Figure 0.2.

The tides are weak with HAT = +0.38 mMSL and LAT =-0.33 mMSL, giving a
total tidal envelope of 0.71 m. The highest and lowest total water levels in the
hindcast period is +1.7 mMSL and -1.2 mMSL and occur during winter (Nov. —
Feb.). The mean total current speed is 0.17+0.03 m/s dominated by residual
(especially during extreme events).



https://github.com/DHI/mikeio
https://github.com/DHI/DHI-MATLAB-Toolbox

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=3h) Omni

EINS-SW-CFSR
N = 753887
H o [m]

mO
MWD [°N-from]
[1>=6 (0.84%)
[055-6
05-55
m45-5
H4-45
M35-4
W3-35
: W25-3
R W2-25
: Wi5-2
: Wi-15
SOUTH ...~ <1 (21.42%)

Figure 0.2  Wave rose at EINS-2
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L&
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8
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567280°N

Gl Germany

6°310'E 6°320'E 6°330'E 6°340'E 6°350'E

'DHI2023-566-AGH.

Figure 0.3  Spatial variation of Hmo across EINS
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Extreme metocean conditions were established using DHI’s state-of-the-art
Joint Extreme Value Analysis (J-EVA) analysis toolbox. Extreme values were
established for return periods up to 10,000 years for wind, waves (significant
wave height, maximum individual wave height based on Glukhovskiy, and
maximum crest height based on Forristall), water levels, and currents. Joint
probability of metocean conditions is also provided.

Extreme conditions

The annual, omni-directional extreme value estimates at the analysis point
EINS-2 are presented in Table 0.2. Variation of extreme CSit and Hmo is also
calculated across the EINS site. The maximum variation of CSy is about 0.3
m/s for a 100-year return period (see Figure 5.15), and that of Hno is about 2 m
for a 50- and 100-year return period (see Figure 6.23 and Figure 6.24). The
directional extreme values are scaled according to DNV-RP-C205, [3].

Comparisons between measured and modelled relation between Hmax and
Trumax demonstrated a very good agreement, and assessment of several
common wave limitation approaches suggests that the extreme sea states are
prone to steepness- or depth-induced wave breaking at EINS. In conclusion,
we used the DNV steepness criteria with an upper bound of Trmax to limit Hmax,
and a ratio of 0.85 between the Cmax and Hmax to limit Crmax accordingly.

Table 0.2 Summary of omni marginal extreme values at EINS-2 (d = 29.1 mMSL)
Conditioned (joint) variables are given in Section 6.2.3.

Extreme value (omni) - Return Period [Year]

Variable

Extreme Wind Speed, WS [m/s], 10m, 10 min 26.8 | 30.1 | 31.4 | 343 | 351 | 355 | 39.7 | 447
High Water level, Total, HWLtt [MMSL] 1.2 1.4 1.5 1.7 1.7 1.8 21 24
Low Water level, Total, LWLt [MMSL] -0.8 -1.0 -1.0 -1.1 -1.2 -1.2 -1.4 -1.6
High Water level, Residual, HWLes [M] 1.0 1.3 1.4 1.6 1.7 1.7 2.0 2.3
Low Water level, Residual, LWLres [M] -0.7 -0.9 -0.9 -1.1 -1.1 -1.1 -1.3 -1.6
Current Speed, Total, Surface, CSsurtace M/S] 1.0 1.2 1.3 15 15 15 1.8 2.1
Current Speed, Total, Depth-averaged, CStot [M/s] 0.7 0.8 0.9 1.0 1.1 1.1 1.3 15

Current Speed, Total, Near-seabed, CSnear-seabed [M/S] 0.5 0.7 0.7 0.8 0.8 0.8 1.0 1.1

Significant wave height, 3hr, Hmo [m] 8.1 9.7 10.3 | 116 | 12.0 | 12.1 | 135 | 146

Peak wave period, assoc. with Hmo, Tp|Hmo [S] 132 | 147 | 153 | 164 | 16.7 | 16.8 | 179 | 187

Mean zero-crossing period, assoc. with Hmo, Toz|Hmo [S] 8.9 9.8 10.1 | 10.7 | 109 | 109 | 11.6 | 12.0

Maximum wave height, Hmax [m] 147 | 172 | 18.2 | 203 | 20.8 | 21.1 | 23.3 | 234
Wave period assoc. with Hmax, TrHmax [S] 11.4 12.5 13.0 13.8 14.1 14.2 15.1 15.1
Maximum crest level with respect to SWL, Cmax,swL 9.7 121 | 13.1 | 153 | 16.0 | 16.3 | 19.2 19.9
Maximum crest level with respect to MSL, CmaxmsL 10.3 | 129 | 139 | 163 | 170 | 173 | 20.3 | 20.4

The expert in WATER ENVIRONMENTS 10
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1 Introduction

This study provides detailed metocean conditions for the Energy Island
North Sea (EINS) and establishes a metocean database for the island and
the adjacent offshore wind farm (OWF) development area (see Figure 1.1).

Energinet Eltransmission A/S (Energinet) was instructed by the Danish Energy
Agency (DEA) to initiate site investigations, including a metocean conditions
assessment, to form part of the site conditions assessment and to serve as the
basis for the design and construction of EINS and related OWF’s. The study
includes an assessment of climate change considering an 80-year lifetime.

Energinet commissioned DHI A/S (DHI) to provide this study with Scope of
Work (SoW) defined in [4]. Later, the work was extended to cover also FEED
level metocean conditions for the offshore wind farm area cf. scope in [5]. The
study refers to the following common practices and guidelines:

« DNV-RP-C205, [3]
« IEC 61400-3-1, [6]

Denmark

United Kingdom

50 mi |
Lo |

Figure 1.1  Thelocation of the Energy Island North Sea (red dot), and
related offshore wind farm development area (dark blue)
The hindcast database (light blue polygon) entails: Waves: EINS-
SW-CFSR, Ocean: EINS-SW-CFSR, Atmosphere: Global-AT-CFSR.

The deliverables included time series data of hindcast metocean parameters,
normal, extreme, and joint analyses at five (5) and eight (8) locations within the
EINS and OWF areas respectively, a metocean database (see Figure 1.1), and
four (4) separate reports:

e Part A: Data Basis — Measurements and Models, [1]
Establishment of bathymetry, measurements and hindcast metocean data.

o Part B: Data Analyses — Energy Island, [7] (this report)
Metocean site conditions for detailed design of the energy island.

e Part C: Data Analyses — Wind Farm Area, [8]
FEED level metocean site conditions for the offshore wind farm area.

e Part D: Data Basis — Hindcast Revalidation Note, [9]
Revalidation of the hindcast metocean data vs. extended measurements.

The expert in WATER ENVIRONMENTS 11
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2 Analysis Points

This section presents the EINS points selected for analysis.

Figure 2.1 shows a map of the five (5) analysis points within the EINS area,
and Table 2.1 presents the coordinates and water depths of the points. The
EINS-1, EINS-2, and EINS-3 analysis points are the locations of lowest water
depth, maximum Hmo and maximum total current speed, respectively. EINS-4
and EINS-5 represent the western and southern regions of EINS. Results at
EINS-2 are presented in the body of this report, while results at all locations are
given in the data reports (listed in Table 11.1) which are attached to this report.

6fa00'E 6°310°E 6°320°E 6°330°E 6°340°E 6°350°E

X Analysis Points (Island)

Depth contour [nMSL]
_______ """ island

Model Mesh

56°310°N

Huo TR=100,,[m]
[ ]>10
I 125-130
Bl 120-125
Bl 15-12
Bl 110-115
Bl 105-1
Bl <05

56°300'N

56°200'N

56‘2‘9'0"N

N

A

0 0.5 1
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Figure 2.1  Map of the Energy Island North Sea (EINS) analysis points

Table 2.1 Coordinates and water depths of the EINS analysis points

Longitude |Latitude |Depth, Depth, Depth,

Description (WGS84 |WGS84  [Survey HDeins SWEIns

[°E] [°N] [MMSL]  |[mMSL]  |[mMSL]
1 | EINS-1 | Shallowest | 6.5714 | 56.5016 | 26.3 27.0 26.6
2 | EINS2 | MaxHmo | 6.5944 | 56.4894 | 28.9 29.1 29.1
3 | EINS-3 | MaxCSw | 6.5383 | 56.5172 | 288 28.9 28.9
4 | EINS-4 West 6.5094 | 56.4962 | 30.1 30.2 30.1
5 | EINS-5 South 6.5533 | 56.4638 | 29.8 29.8 29.8
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3 Wind

This section presents a summary of the wind data basis established in
[1], followed by a presentation of normal and extreme wind conditions.

The wind data was adopted from [2] and consisted of CFSR data during the
period 1979 — 2022 (43.75 years). For convenience, we interpolated the CFSR
data from its native resolution (~23 km and 1 hour) to the mesh and output time
step of the wave model of this study (~400 m and 1800 s). The wind dataset is
denoted EINS-AT-CFSR. Table 3.1 summarises the metadata of the EINS-AT-
CFSR dataset.

Table 3.1 Metadata of the EINS-AT-CFSR dataset
Time series data was provided to Energinet (.csv, .mat, .nc, .dfs0).

Name | Value ‘

Dataset ID: EINS-AT-CFSR

Start Date [UTC]: 1979-01-01 01:00:00

End Date [UTC]: 2022-09-30 23:30:00

Time Step [s]: 1800 (interpolated from 3600 s)
Cell Size [m]: ~400 (interpolated from ~23 km)

The CFRS wind is considered representative of a 2-hour averaging period, see
[2], at 10 m height. Methods of converting to other temporal averages and
heights are assessed for normal and extreme conditions respectively.

The wind analyses are presented in speed bins of 1.0 m/s and directional bins
of 22.5° at 10 (and 30) m height. The direction is from where the wind is
coming from. Table 3.2 presents the variables of the EINS-AT-CFSR dataset,
including the bin sizes applied in figures and tables.

Table 3.2 Wind variables of the EINS-AT-CFSR dataset
The wind direction is from where the wind is blowing.

Variable name | Abbrev. ’ Unit ’ Bin size

Wind speed at 10 m height WSi10 m/s 1.0
Wind direction at 10 m height WD10 °N-from 225

The wind analyses cover the data period 1979-09-01 — 2022-08-31 (43 years),
a round number of years, which is preferrable for extreme value analyses. The
normal conditions apply a 30-min interval (as the hindcast models), while the
extreme conditions (J-EVA) apply a 1-hour interval (as native in CFSR).

The main body of this report presents results at EINS-2 (the location of max
Hmo), while results at all analysis points are given in the data reports (listed in
Table 11.1) which are attached to this report. The data reports contain all
(scatter) tables and figures presented below.

The expert in WATER ENVIRONMENTS 13
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3.1 Normal wind conditions

The normal wind conditions are presented in terms of:
e Normal wind profile

e Time series

e Wind rose

e Histogram (Weibull parameters)

e Monthly statistics

e Directional statistics

3.1.1 Normal wind profile

Wind profiles are assessed in Section 3.2.1 in Part A, [1]. It is recommended to
apply a power profile with a = 0.08 to convert normal (average) wind speeds
from 10 to 30 m height (this corresponds to a factor of 1.09).

3.1.2 Time series

Figure 3.1 shows a time series of wind speed at EINS-2 during the considered
43-year period. The mean is 8.8 m/s, and the maximum is 32.3 m/s (6™ Nov.
1985).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Time series (1979-09-01 -2022-08-31;At=30min; t=2h)

35 T T T T T T T T

Il

— EINS-AT-CFSR

5
ot T 9 T 0 P S A l

NDHBADNDHBA DN D
D P PR DR D SO
P F PP PP I P S S S

Figure 3.1  Time series of wind speed at EINS-2

3.1.3 Wind rose

Figure 3.2 shows a wind rose at EINS-2. As typical for the North Sea, wind
occurs from all directions, but with a predominance from west, and least
frequently from northeast.

The expert in WATER ENVIRONMENTS 14
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=2h) Omni

EINS-AT-CFSR
N = 753887
WS10 [m/s]

WD N-from]

o
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Figure 3.2  Wind rose at EINS-2; WS1ovs WD1o

3.14 Histogram (Weibull parameters)

Figure 3.3 shows a histogram of wind speed at EINS-2. The figure shows a
mean value (m) of 8.79 m/s and omni Weibull parameters of A =9.91 and k =
2.35. Weibull parameters for all directions are given in the data reports.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
wblfit (1979-09-01 -2022-08-31; At=30min; t=2h), Season: Omni, WD10: Omni °N-frol
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I Histogram of data bined by 1m/s (m=8.79)
Weibull ML fit based on all data (m=8.79, A=9.91, k=2.35) |
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Figure 3.3  Histogram of wind speed (w. Weibull parameters) at EINS-2
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3.1.5

Figure 3.4 shows monthly statistics of wind speed at EINS-2. The mean varies
from 7 m/s during summer to 11 m/s during winter. The strongest wind speeds
occurred during the months of Nov., Dec., and Jan.
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Figure 3.4  Monthly statistics of wind speed at EINS-2
3.1.6 Directional statistics

M
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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(1979-09-01 -2022-08-31; At=30min; t=2h), EINS-AT-CFSR, Monthly

+/-STD

Figure 3.5 shows directional statistics of wind speed at EINS-2. The mean is
strongest from the northwest at almost 10 m/s, and weakest from northeast at
about 7 m/s. The strongest winds occur from the (north-)western sector.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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Figure 3.5  Directional statistics of wind speed at EINS-2
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3.2 Extreme wind conditions

The extreme wind conditions are estimated following the steps outlined in
Appendix D: J-EVA Summary. The storm events selected for the J-EVA
analyses are described in Section 6.2 and shown in Figure 6.19. A J-EVA
statistical model (see Section 14.3) has been set up, followed by simulation
including directional scaling (see Section 14.4 in Appendix D: J-EVA Summary)
to estimate the extremes of the 10 m wind speed.

3.2.1 Extreme wind profile (height conversion)

Wind profiles are assessed in Section 3.2.1 in Part A, [1]. It is recommended to
apply a power profile with a = 0.10 to convert extreme wind speeds from 10 to
30 m height (this corresponds to a factor of 1.12).

3.2.2 Wind averaging (temporal conversion)

Wind averaging was assessed in Section 3.2.2 in Part A, [1]. Itis
recommended to adopt the IEC factors for converting between averaging times
of extreme wind speeds within the range of 2 hours (CFSR) and 10-min, i.e., a
factor of 1.08 to convert from 2-h to 10-min average duration of extreme wind
speeds. A more cautious/conservative approach may be to adopt the Frgya
profile for temporal conversion of extreme wind speeds.

3.2.3 Extreme wind speed

Figure 3.6 shows directional annual number of exceedances of the 10 m wind
speed from the 80,000-year simulation, which is used to calculate the best
estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return period extremes. Best
estimates for larger return periods are calculated based on simulating up to 4 x
10° years of events, where the minimum number of exceedances Ne = 50 is
chosen for the 80,000-year return period.

80.000 years is not provided as return period values, but the J-EVA simulations
are run up to 80.000 years to support the directional scaling that needs
directional values of 8 times the considered return periods (see Section 14.4.1
and 14.4.2). The extreme values are presented (Table 3.3 and Table 3.4) for a
maximum return period of 10,000 years.

The model fits the omni-directional data very well. There is hardly any variation
in the quality of the fit to the directional values, which is very good for all
directions. From a J-EVA point of view, it is also important that all data points
representing storm events are within the light blue shaded area since this
means that they have been resampled in the simulation.

Table 3.3 and Table 3.4 provide the values of the directional extreme wind
speeds at 10 m and 30 m height. The values are representative of 10-min
average wind speed. Extreme wind speeds of a 2-hour averaging period are
presented in the Excel tables (listed in Table 11.1) which are attached to this
report. The directional extreme values are scaled according to DNV-RP-C205,

[E].
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Figure 3.6  Directional exceedance probability of 10 m height wind speed at
EINS-2
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval.
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Table 3.3 Directional 10-min extreme wind speed, 10 m height, at EINS-2

Directio D,
° 0 1 ) 10 50 100 1000 0000

Omni 26.8 | 30.1 | 314 | 343 | 351 | 355 39.7
0 224 | 23.7 | 264 | 27.0 | 27.3 30.9 34.9
22.5 225 | 237 | 26.2 | 27.0 | 27.2 30.9 34.9
45 219 | 247 | 258 | 28.3 | 289 | 294 33.5 38.6
67.5 21.7 | 245 | 256 | 28.1 | 28.7 | 29.1 33.0 36.9
90 219 | 247 | 259 | 28.3 | 289 | 29.3 32.9 37.3
112.5 226 | 252 | 26.1 | 284 | 289 | 29.3 32.4 36.0
135 234 | 256 | 265 | 284 | 29.1 | 29.3 32.5 36.1
157.5 241 | 26.2 | 270 | 28.8 | 293 | 29.6 32.2 35.3
180 255 | 27.8 | 285 | 30.1 | 30.7 | 30.9 33.6 36.6
202.5 25.7 | 282 | 29.2 | 312 | 320 | 322 36.1 40.4
225 26.1 | 28.8 | 299 | 324 | 33.2 | 335 37.8
2475 26.8 | 30.1 | 314 | 343 | 351 | 355 39.7
270 268 | 30.1 | 314 | 343 | 351 | 355 39.7 ‘
292.5 26.8 | 30.1 | 314 | 343 | 351 | 355 39.7
315 268 | 30.1 | 314 | 343 | 351 | 355 39.7 ‘
337.5 249 | 28.0 | 29.2 | 32.0 | 32.7 | 33.2 37.4 ‘

Table 3.4 Directional 10-min extreme wind speed, 30 m height, at EINS-2

° Directiona eme d Speed 0 0
Directio D
0 0 0 30 00 00]0 010000
Oomni 299 | 336 | 351 | 38.3 | 39.2 | 39.7 44.4
0 250 | 264 | 294 | 30.1 | 30.5 34.5 38.9
22.5 251 | 264 | 293 | 30.1 | 304 34.5 38.9
45 245 | 27.6 | 288 | 316 | 323 | 32.8 37.4 43.0
67.5 242 | 274 | 286 | 313 | 321 | 324 36.9 41.2
90 245 | 27.6 | 289 | 316 | 323 | 32.7 36.8 41.6
112.5 252 | 28.1 | 29.2 | 31.7 | 323 | 32.7 36.2 40.1
135 26.2 | 28.6 | 295 | 31.7 | 324 | 32.7 36.3 40.3
157.5 269 | 293 | 30.1 | 32.2 | 32.7 | 33.0 35.9 39.4
180 284 | 31.0 | 31.8 | 336 | 342 | 345 37.5 40.9
202.5 28.7 | 315 | 325 | 34.8 | 357 | 35.9 40.3 45.1
225 29.2 | 322 | 334 | 36.2 | 370 | 37.4 42.2
247.5 299 | 336 | 351 | 38.3 | 39.2 | 39.7 44.4
270 299 | 336 | 351 | 383 | 39.2 | 39.7 44.4
292.5 299 | 336 | 351 | 383 | 39.2 | 39.7 44.4
315 299 | 336 | 351 | 383 | 39.2 | 39.7 44.4
337.5 278 | 312 | 325 | 357 | 36,5 | 37.0 41.7
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4 Water Level

This section presents a summary of the water level data basis
established in [1], followed by a presentation of normal and extreme
water level conditions.

The water level data was adopted from the hydrodynamic model forced by
CFSR established for EINS (HDes) in [2]. The water level consists of a tidal
and a non-tidal (residual) component. The two components were separated by
harmonic analysis (see Section 4.1.2). The water level dataset is denoted
EINS-HD-CFSR. Table 4.1 summarises the metadata of the EINS-HD-CFSR
dataset.

Table 4.1 Metadata of the EINS-HD-CFSR dataset
Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0).

INETNIE | Value ‘

Dataset ID: EINS-HD-CFSR
Start Date [UTC]: 1979-01-01 01:00:00
End Date [UTC]: 2022-09-30 23:30:00
Time Step [s]: 1800

Cell Size [m]: ~400 (Island area)

The water level data is relative to mean sea level (MSL).

The water level analyses are presented in bins of 0.1 m. Table 4.2 presents the
water level variables of the EINS-HD-CFSR dataset, including the bin sizes
applied in figures and tables throughout this report.

Table 4.2 Water level variables of the EINS-AT-CFSR dataset

Variable name | Abbrev. | Unit | Bin size

Water Level — Total WlLotal mMSL 0.1
Water Level — Tide WLtide mMSL 0.1
Water Level - Residual WLresidual m 0.1

The water level analyses cover the data period 1979-09-01 — 2022-08-31
(43 years), a round number of years, which is preferrable for extreme value
analyses. The normal conditions apply a 30-min interval (as the hindcast
models), while the extreme conditions (J-EVA) apply a 1-hour interval (as
native in CFSR).

The main body of this report presents results at EINS-2 (the location of max
Hmo), while results at all analysis points are given in the data reports (listed in
Table 11.1) which are attached to this report. The data reports contain all
(scatter) tables and figures presented below.
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4.1 Normal water level conditions

The normal water level conditions are presented in terms of:
e Time series

o Tidal levels

e Histogram

e Monthly statistics

411 Time series

Figure 4.1 shows a time series of water level at EINS-2 during the 43-year
period, for total, tidal, and residual components. The ‘de-tiding’ of water level is
explained in Section 4.1.2. The highest total and residual water levels are

1.67 mMSL and 1.59 m (6" Nov. 1987). The tidal levels are given in

Section 4.1.2.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)

Time series (1979-09-01 -2022-08-31; At=30min; T=1h) EINS-HD-CFSR

2 T T T T T T T T T T T T T T T T T T T T T —
1.5 -
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0.5k 1
0
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1.5
-2
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— WL - Residual
— WL - Tide

WL [mMSL]

Figure 4.1  Time series of water level at EINS-2

4.1.2 Tidal levels

The tides are weak at EINS, but to quantify this, astronomical water levels (tidal
levels) are provided below. The levels were calculated using harmonic analysis
to separate the tidal and non-tidal (residual) components of the total water level
time series from the hydrodynamic model (after subtracting the mean of the
data).

Figure 4.1 shows the time series of the total, astronomical tidal and residual
water level at EINS-2, while Table 4.3 summarises the astronomical water
levels. The tide can be characterised as semi-diurnal (i.e., two high tides per
day). The HAT is +0.38 mMSL and LAT -0.33 mMSL, giving a total tidal
envelope of 0.71 m.

The harmonic analysis was conducted using the U-tide toolbox, [10], which is
based on the IOS tidal analysis method by the Institute of Oceanographic
Sciences as described in [11], and integrates the approaches defined in [12]
and [13]. The residual water level was derived by subtracting the predicted tidal
level from the total water level. The astronomical water levels are defined as
(https://ntslf.org/tgi/definitions):
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e HAT: Maximum predicted WL

« MHWS: Average of the two successive high waters reached during the
24 hours when the tidal range is at its greatest (spring tide)

¢« MHWN: Average of the two successive high waters reached during the
24 hours when the tidal range is at its lowest (neap tide)

¢« MLWN: Average of the two successive low waters reached during the
24 hours when the tidal range is at its lowest (neap tide)

e MLWS: Average of the two successive low waters reached during the
24 hours when the tidal range is at its greatest (spring tide)

e LAT: Minimum predicted WL

Table 4.3 Tidal levels at EINS-2

Tidal level Abbreviation Value Unit

Highest astronomical tide HAT 0.38 mMSL

Mean high water springs MHWS 0.25 mMSL

Mean high water neaps MHWN 0.13 mMSL

Mean sea level MSL (z0) 0.00 mMSL

Mean low water neaps MLWN -0.13 mMSL

Mean low water springs MLWS -0.19 mMSL

Lowest astronomical tide LAT -0.33 mMSL

4.1.3 Histogra

m

Figure 4.2 shows a histogram of total water level at EINS-2.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)
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4.1.4 Monthly statistics

Figure 4.3 shows monthly statistics of total water level at EINS-2. The monthly
mean water level varies within £ 0.1 m during the year, being lowest in
spring/summer and highest in winter. The highest (+1.7 mMSL), as well as the
lowest (-1.2m MSL) water level, occurs during winter (Nov. — Feb.).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)
(1979-09-01 -2022-08-31; At=30min; t=1h), EINS-HD-CFSR, Monthly
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Figure 4.3  Monthly statistics of total water level at EINS-2.
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4.2 Extreme water level conditions

The extreme water level conditions are estimated following the steps outlined

in Appendix D: J-EVA Summary. The input water level time series was from the
HDeins model. The storm events selected for the J-EVA analyses are
separately chosen for the high and low water levels. Only seasonal variability is
considered as explained in Section 14.2.1, as there is no directionality
associated to water level. Filtering of the storm events is carried out using a
criteria of regression quantile > 0.7 on the storm events. The resulting

‘retained’ and ‘removed’ events are shown as an example for the HWLes in
Figure 4.4. Similar selection is made for LWLes, HWLot, and LWLiot.

A J-EVA statistical model (see Section 14.3) has been set up, followed by
simulation (see Section 14.4) to estimate the extremes of the high and low
water levels. The extreme water levels are presented separately for the
expected construction completion in 2033 and for the expected lifetime of the
island, which is (until) 2113.

o Removed Events - Retained Events
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Figure 4.4  Selected events for residual high water level, HWLes at EINS-2.
Events above the 0.7 quantiles are retained for the J-EVA analysis.
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42.1 Extreme high water levels

Figure 4.5 and Figure 4.6 show the best estimate of the residual and total high
water level, respectively, from an 80,000-year simulation, which is used to
calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return periods.
Best estimates for larger return periods are calculated based on simulating up
to 8 x 106 years of events, where the minimum number of exceedances Ne =
100 is chosen for the 80,000-year return period. The extreme values are
presented (Table 4.4 - Table 4.7) for a maximum return period of 10,000-year.

The model fits the data, which is indicated by the dashed black line, quite well
for larger return periods. For smaller periods (<10 years), there is a slight
overestimation because the presented (example) fit to the spline model is
made based on data that is representative of return periods that are larger than
10 years.

Extreme High Water Levels for year 2033

Table 4.4 provides the extreme residual and total high water levels for the
expected construction completion in year 2033.

Table 4.4 Extreme High Water Levels for year 2033 at EINS-2

Variable

HW.L ot
[mMMSL] 1.2 1.4 1.5 1.7 1.7 1.8
HWlLres
[mMMSL] 1.0 1.3 1.4 1.6 1.7 1.7

Extreme High Water Levels for year 2113

Table 4.5 provides the extreme residual and total high water for the expected
lifetime of the Island year 2113. Following Part A, [1], a sea level rise (SLR) of
0.8 m was added to the HWL relative to the vertical reference of today.

Table 4.5 Extreme High Water Levels for year 2113 at EINS-2
The levels are relative to the vertical reference (MSL) of today.

Variable
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Posterior Predictive Distribution
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Figure 4.5  Extreme Residual High Water Level (for year 2033) at EINS-2
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval of the estimate.
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Figure 4.6  Extreme Total High Water Level (for year 2033) at EINS-2
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval of the estimate.
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4.2.2 Extreme low water levels

Figure 4.7 and Figure 4.8 show the best estimate of the residual and total low
water level, respectively, from 80,000-year simulation, in the same manner as
for high water levels above.

The model fits the data, which is indicated by the dashed black line, quite well
for LWLes but slightly overestimates (order of 0.1 m) for LWL, but overall, the
fit is quite good since the input hindcast data lies within the credible intervals of
the spline model fit.

Extreme Low Water Levels for year 2033

Table 4.6 provides the extreme residual and total low water levels for the
expected construction completion in year 2033.

Table 4.6 Extreme Low Water Levels for year 2033 at EINS-2

Variable

LWLot[WMSL] | -08 | -1.0 | -10 | -11 | -12 | -1.2
LWLres
[mMSL] 07 | 09 | 09 | 11 | -11 | -11

Extreme Low Water Levels for year 2113

Table 4.7 provides the extreme residual and total low water levels for the
expected lifetime of the island year 2113. Following Part A, [1], a sea level rise
(SLR) of 0.8 m was added to the LWL relative to the vertical reference (MSL) of
today.

Table 4.7 Extreme Low Water Levels for year 2113 at EINS-2
Levels are relative to the vertical reference (MSL) of today.

Return Period [years

Variable
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Figure 4.7  Extreme Residual Low Water Level (for year 2033) at EINS-2.
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval of the estimate.
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Figure 4.8  Estimates of Total Low Water Level (for year 2033) at EINS-2.
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval of the estimate.
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5 Current

This section presents a summary of the current data basis established in
[1], followed by a presentation of normal and extreme current conditions.

The current data is adopted from the hydrodynamic model forced by CFSR
established for EINS (HDens) [1]. The current consists of a tidal and a non-tidal
(residual) component. The two components were separated by harmonic
analysis (see Section 4.1.2). The current dataset is denoted EINS-HD-CFSR.
Table 5.1 summarizes the metadata of the EINS-HD-CFSR dataset.

Table 5.1 Metadata of the EINS-HD-CFSR dataset.
Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0).

Name | Value ‘

Dataset ID: EINS-HD-CFSR
Start Date [UTC]: 1979-01-01 01:00:00
End Date [UTC]: 2022-09-30 23:30:00
Time Step [s]: 1800

Cell Size [m]: ~400 (Island area)

The current data is considered representative of 1-hour average values of
depth-average and is given at 30-min interval.

The current analyses are presented in speed bins of 0.05 m/s and directional
bins of 22.5°. Table 5.2 presents the variables of the EINS-HD-CFSR dataset,
including the bin sizes applied in figures and tables throughout this report.

Table 5.2 Current variables of the EINS-HD-CFSR dataset.
The current direction is to where the current is flowing.

Variable name | Abbrev. ’ Unit ’ Bin size

Current speed - Depth-average - Total CSavg,tot m/s 0.05
Current direction - Depth-average - Total | CDavg,tot °N-to 22.5

The current analyses cover the data period 1979-09-01 — 2022-08-31

(43 years), a round number of years, which is preferable for extreme value
analyses. The normal conditions apply a 30-min interval (as the hindcast
models), while the extreme conditions (J-EVA) apply a 1-hour interval (as
native in CFSR).

The main body of this report presents results at EINS-2 (the location of max
Hmo), while results at all analysis points are given in the data reports (listed in
Table 11.1) which are attached to this report. The data reports contain all
(scatter) tables and figures presented below.
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51 Normal current conditions

The normal current conditions are presented in terms of:
e Normal current profile

e Time series

e Current roses

e Histogram

e Monthly statistics

o Directional statistics

¢ Maps of mean current speed

51.1 Normal current profile
Current profiles are assessed in Section 5 of Part A, [1].

For normal (mean) conditions, it is recommended to apply a power profile with
a = 1/7, cf. Section 4.1.4.2 in DNV RP-C205 [3], with the surface (z = 0) current
speed estimated as 8/7 (1.14) times the depth-averaged current speed.

However, it is noted that individual current profiles deviate substantially from
the (mean) power profile, and the (mean) normal current profile can, therefore,
not be applied to represent all single/individual current profiles.

51.2 Time series

Figure 5.1 shows a time series of current speed at EINS-2 during the 43-year
hindcast period for total, tidal, and residual. The ‘de-tiding’ of current speed
follows the method given in Section 4.1.2 for water level. The highest total and
residual current speeds are almost the same, with values of 1.07 and 1.06 m/s,
respectively (in 1990).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL,; L=442m)
Time series (1979-09-01 -2022-08-31;At=30min; t=1h) EINS-HD-CFSR

11 T T T T T T T T T T T T T T T T T T T T T
1
0.9
.08 I
£ 06|
£06)
0.5
] I
O 04y
03 cs
0.2 CS - Residual
08 CS - Tide

Figure 5.1  Time series of current speed at EINS-2
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513 Current roses

Figure 5.2, Figure 5.3, and Figure 5.4 show current roses for total, tidal, and
residual conditions at EINS-2. The total rose shows currents to most directions
but with a predominance of current going towards northeast, which is due to
the prevailing residual currents going towards the northeast. The northwest has
the least occurrence of currents going to. The tidal currents are weak and
travel mainly toward southeast, and secondarily towards north (the tide is < 0.1
m/s about 50% of the time).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=1h) Omni

EINS-HD-CFSR
N = 753887

CS [m/s]

CD [°N-t0]
[J>=0.55 (0.35%)
[J0.5-0.55
[0.45-0.5
0.4 -045
o0.35-0.4
o0.3-0.35
o0.25-0.3
Mo0.2-0.25
WO0.15-0.2
MO0.1-0.15
[1<0.1 (22.91%)

Figure 5.2  Total current rose at EINS-2
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)

Figure 5.3  Tidal current rose at EINS-2

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=1h) Omni

Figure 5.4  Residual current rose at EINS-2
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EINS-HD-CFSR
N = 753887

CS - Tide [m/s]
CD - Tide [°N-to]
[1>=0.55 (0.00%)
[]0.5-0.55
[0.45-0.5
H0.4-0.45
0.35-0.4
M0.3-0.35
Wo0.25-03
Wo0.2-0.25
o0.15-0.2
Mo0.1-0.15
[1<0.1 (52.50%)

EINS-HD-CFSR

N = 753887

CS - Residual [m/s]
CD - Residual [°N-t
[1>=0.55 (0.24%)
[J10.5-0.55
[10.45-0.5
[H0.4-0.45
0.35-0.4
B0.3-0.35
0.25-0.3
o0.2-0.25
o0.15-0.2
O0.1-0.15

[1<0.1 (45.19%)
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51.4 Histogram

Figure 5.5 shows a histogram of current speed at EINS-2.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)
gvglfit (1979-09-01 -2022-08-31; At=30min; t=1h), Season: Omni, CD: Omni °N-to
. T

I Histogram of data bined by 0.05m/s (m=0.17)
Weibull ML fit based on all data (m=0.17, A=0.19, k=1.87)
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Figure 5.5  Histogram of current speed at EINS-2
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5.1.5

Monthly statistics

DHI)

Figure 5.6 shows monthly statistics of current speed at EINS-2. The monthly
mean current speed varies within 0.15 - 0.2 m/s during the year, being weakest

in summer and strongest in winter. The strongest current speeds (up to

1.07 m/s) occur during autumn to winter (Oct. — Jan.).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)

(1917?-09-01 -2022-08-31; At=30min; t=1h), EINS-HD-CFSR, Monthly
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Figure 5.6  Monthly statistics of current speed at EINS-2
5.1.6 Directional statistics

Figure 5.7 shows directional statistics of current speed at EINS-2. The mean
current speed is strongest towards the northeast (45°) of about 0.22 m/s, and

weakest towards northwest (315°) of about 0.16 m/s. The strongest max
current speeds occur towards the northeast and reach 1.06 m/s.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=442m)

(19719-109-01 -2022-08-31; At=30min; t=1h), EINS-HD-CFSR, Directional
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Figure 5.7  Directional statistics of current speed at EINS-2
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5.1.7 Maps of normal current speed

Figure 5.8 presents the spatial variation across EINS of the mean total depth-
averaged current speed. Mean values of CSy from the hindcast data at each
mesh element are calculated and the variation is presented as contours. As
seen, there is hardly any variation (0.17£0.03 m/s) across the EINS area.
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Figure 5.8  Spatial variation across EINS area of the mean total depth-averaged current speed
The colour map shows the current speed, and the contours show the water depth.
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5.2 Extreme current conditions

The extreme current conditions are estimated following the steps outlined in
Appendix D: J-EVA Summary. The input depth-average current time series
was from the HDgins model. The total current speed is composed of two
effects, namely tidal and residual. The residual current contribution can further
be decomposed into contributions due to several effects, e.g., wind-driven,
density-driven etc. At EINS, the extreme currents are dominated by the wind-
induced residual. The storm events selected for the J-EVA analyses are based
on the directional and seasonal variability (see Section 14.2.1), with filtering
carried out using a criteria of regression quantile > 0.65 that is applied on the
residual depth-average current speed storm events. The resulting ‘retained’
and ‘removed’ events are shown in Figure 5.9.

Removed Events ) Retained Events

CsResiduaI [mis]
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2 ™
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Figure 5.9  Selected events for residual depth-average current speed, CSres
at EINS-2.

Events above the 0.65 quantile are retained for the J-EVA analysis.
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521 Extreme current profile

Current profiles are assessed in Section 5 in Part A, [1]. A generally applicable
and feasible current profile for currents during extreme events does not exist.

For extreme surface (z =0 m) currents, it is recommended to apply a factor of
1.3 to convert the depth-average current speed to surface (z =0 m). This is
based on detailed assessment of measured and modelled 3D current data.

For extreme near-seabed (1 m above) currents, it is recommended to apply the
power profile with o = 1/7, cf. Section 4.1.4.2 in DNV RP-C205 [3], and the
surface (z = 0) current speed estimated as 8/7 (1.14) times the depth-averaged
current speed. This corresponds to a factor ranging from 0.65 at 25 m depth to
a factor of 0.72 at 50 m depth.

5.2.2 Extreme current speed

A J-EVA statistical model (see Section 14.3) has been set up for extreme
residual depth-average current speed followed by simulation including the
directional scaling (see Section 14.4) to estimate the extremes. The current
direction (going-to) at the time of peak residual current speed and the season
are used as covariates. It is to be noted that the total current speed is
estimated by combining the residual current speed estimated using the J-EVA
model and the random sampling of the tidal component from the input hindcast
time series at the time of simulation. Furthermore, CD may not be fully
correlated with CDres. Consequently, directional variation of CSiot will not be
correlated to that of CSyes.

Figure 5.10 shows the directional annual number of exceedances of the
residual depth-average current speed estimated from an 80,000-year
simulation in the same manner as for water level.

The model fits the omni-directional data quite well, as well as in the dominating
northeast and southwest directions (see Figure 5.11). From a J-EVA point of
view, it is also important that all data points representing storm events are
within the light blue shaded area since this means that they have been
resampled in the simulation.

Table 5.3 and Table 5.4 provides the values of the directional extreme depth-
average residual and total current speeds. The directional extreme values are
scaled according to DNV-RP-C205, [3].

For a few (weak) directional sectors there was no historical storm that
corresponded to a 1-year return period. In those cases, the directional 1-year
value was estimated by a log-linear extrapolation from the 5 and 10 year return
period values.

The current profile in Section 5.2.1, is used to calculate the extreme surface
and near-seabed current speeds. Table 5.5 and Table 5.6 provides the
directional extreme surface residual and total current speeds, while Table 5.7
and Table 5.8 provides the directional extreme near-seabed residual and total
current speeds.
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Figure 5.10 Directional exceedance probability of Residual Current Speed
CS,.s at EINS-2
Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval.
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5.2.3 Extreme current rose

Figure 5.11 shows the extreme residual and total current rose using the storm
events selected for the J-EVA analysis (see Section 5.2 and Figure 5.9).
Extreme currents have a strong directionality, with northeast and southwest
(going-to) being dominant.
EINS-2 (56.489395°E; 6.594444°N; d=29.1mMSL)
Rose plot (1979-09-01-2022-09-01; At=1h; t=1h) Omni

HI:)EINS

N =2150

CDResiduaI [°N-to]

CSResidual (m/s]

[1>=0.7 (1.26%)
[Jo6-07
Mo5-06
Wo4-05
Mo3-04
Wo2-03
MWo1-02
[1<0.1 (0.00%)

Figure 5.11 Extreme residual current rose using the storm events selected
for J-EVA analysis.

EINS-2 (56.489395°E; 6.594444°N; d=29.1mMSL)
Rose plot (1979-09-01-2022-09-01; At=1h; t=1h) Omni

HDEINS

EAST N =2150
CD,,, [°N-to]

CS, [m/s]

total

[1>=0.7 (1.40%)
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Mo5-06
Mo4-05

! Wo3-04
- e e : - 02 ¥ 03
| Mo.1-02
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Figure 5.12 Extreme total current rose using the storm events selected for
J-EVA analysis.
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Table 5.3 Directional Extreme Depth-Average Residual Current Speed at

EINS-2
° Directiona eme Depth-Average Residua e peed €
Directio D,
0 0 30 00 0]0]0, 0000
Oomni 06 | 08 | 09 | 10 | 1.0 1.1
0 05 | 07 | 0.7 | 09 | 09 0.9 1.1
22.5 0.6 | 08 [ 09 | 10 | 1.0 1.1
45 06 | 08 | 09 | 10 | 1.0 1.1
67.5 0.6 08 [ 08 | 1.0 | 1.0 1.0 1.2
90 05 | 06 | 0.7 | 0.8 | 09 0.9 1.0 1.2
112.5 04 | 06 | 06 | 0.8 | 0.8 0.8 1.0 1.1
135 04 | 06 | 06 | 0.7 | 0.8 0.8 0.9 1.1
157.5 04 | 06 | 06 | 0.7 | 0.8 0.8 0.9 1.1
180 05 | 06 | 06 | 0.7 | 0.8 0.8 0.9 1.1
202.5 06 | 0.7 | 0.7 | 0.8 | 0.8 0.9 1.0 1.1
225 05 | 06 | 0.7 | 0.8 | 0.8 0.8 1.0 1.1
2475 04 | 05 | 06 | 0.7 | 0.7 0.8 0.9 1.1
270 05 | 05 | 06 | 0.7 0.7 0.9 1.0
292.5 05 | 05 | 0.7 | 0.7 0.7 0.9 1.0
315 04 | 05 | 06 | 0.6 0.7 0.8 1.0
337.5 04 | 05 | 06 | 0.7 | 0.7 0.7 0.9 1.1
Table 5.4 Directional Extreme Depth-Average Total Current Speed at
EINS-2
° Directiona eme Depth-Average Tota 6 peed
Directio D,
0 0 80 0]0 0]0]0, 0000
Omni 07 | 08 | 09 | 10 | 11 1.1
0 06 | 0.7 | 08 | 09 | 1.0 1.0 1.2
22.5 07 | 08 | 09 | 10 | 11 1.1
45 07 | 08 | 09 | 10 | 11 1.1
67.5 0.7 0.8 0.9 1.0 1.1 1.1
90 06 | 0.7 | 08 | 09 | 09 0.9 1.1
112.5 05 | 06 | 0.7 | 0.8 | 0.9 0.9 1.0 1.2
135 05 | 06 | 0.7 | 0.8 | 0.8 0.8 1.0 1.2
157.5 05 | 06 | 06 | 0.8 | 0.8 0.8 1.0 1.1
180 05 | 06 | 0.7 | 0.8 | 0.8 0.8 0.9 1.1
202.5 06 | 0.7 | 0.7 | 0.8 | 0.8 0.8 1.0 1.1
225 05 | 06 | 0.7 | 0.8 | 0.8 0.8 1.0 1.1
247.5 06 | 0.6 | 0.7 | 0.7 0.8 0.9 1.1
270 05 | 05 | 0.7 | 0.7 0.7 0.9 1.0
292.5 0.5 0.5 0.7 0.7 0.7 0.9 1.0
315 05 | 05 | 0.7 | 0.7 0.7 0.9 1.1
337.5 06 | 0.6 | 0.8 | 0.8 0.8 1.0 1.1
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Table 5.5 Directional Extreme Surface Residual Current Speed at EINS-2

Directio D [°
0 1 5 10 50 100 1000 0000
0.8 10 | 1.1 1.3 1.4 1.4 1.6

omni

0 0.7 | 09 | 1.0 1.1 1.2 1.2 1.4

22.5 08 | 1.0 | 11 | 13 | 14 14 1.6

45 08 | 1.0 | 11 | 13 | 14 14 1.6

67.5 08 | 1.0 | 11 | 13 | 13 14 1.6

90 06 | 08 | 09 | 11 | 11 11 14
112.5 06 | 08 | 0.8 | 1.0 | 1.0 1.0 1.3 1.5
135 06 | 0.7 | 0.8 | 1.0 | 1.0 1.0 1.2 15
157.5 06 | 0.7 | 0.8 | 1.0 | 1.0 1.0 1.2 15
180 06 | 08 | 0.8 | 1.0 | 1.0 1.0 1.2 14
202.5 07 | 09 |09 | 11 | 11 11 1.3 15
225 07 | 08 | 09 | 10 | 112 11 1.3 15
2475 05 | 07 | 08 | 09 | 1.0 1.0 1.2 15
270 04 | 06 | 0.7 | 0.8 | 0.9 0.9 11 14
2925 04 | 06 | 0.7 | 09 | 0.9 0.9 11 14
315 H 05 | 06 | 0.8 | 0.8 0.9 11 14
337.5 05 | 07 | 0.7 | 09 | 0.9 1.0 1.2 15

Table 5.6 Directional Extreme Surface Total Current Speed at EINS-2

° Directiona eme ace Tota € peeda 0 ace
Directio D,
0 0 80 0[0) 000 0000
Omni 1.0 1.2 1.3 15 15 15 1.8
0 0.9 1.1 1.2 1.3 1.3 14 1.6 1.8
225 1.0 1.2 1.3 15 15 15 1.8
45 1.0 1.2 1.3 15 15 15 1.8
67.5 1.0 1.2 1.2 14 | 15 15 1.7
90 0.8 10 | 11 1.2 1.3 1.3 15 1.8
1125 08 | 09 | 1.0 1.2 1.2 1.2 14 1.7
135 0.7 | 09 | 1.0 1.1 1.2 1.2 1.4 1.6
157.5 0.7 | 09 | 0.9 11 11 1.2 14 1.6
180 0.7 | 09 | 0.9 11 11 1.1 1.3 15
202.5 0.8 1.0 | 1.0 1.2 1.2 1.2 1.4 1.6
225 08 | 09 | 0.9 1.1 1.1 1.1 1.3 1.6
2475 06 | 0.8 | 0.9 1.0 11 1.1 1.3 15
270 0.7 | 0.8 | 0.9 1.0 1.0 1.2 14
292.5 0.7 | 0.8 1.0 1.0 1.0 1.3 15
315 0.7 | 0.8 | 0.9 1.0 1.0 1.2 15
337.5 06 | 0.8 | 0.9 1.1 1.1 1.1 14 1.6
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Table 5.7 Directional Extreme Near-Seabed Residual Current Speed at
EINS-2

22.5° Directional Extreme Near-seabed Residual Current Speed, CSres, near-
seabed [m/s

Return Period

Direction (CD [°N-
1000

0.6 | 0.7 | 0.7
0 04 | 05 | 05 | 0.6 | 0.6 0.6
22.5 05 | 06 | 06 | 0.7 | 0.7 0.8
45 05 | 06 | 06 | 0.7 | 0.7 0.8
67.5 05 | 06 | 06 | 0.7 | 0.7 0.7
90 03 | 04 | 05 | 06 | 0.6 0.6 0.7
1125 03 | 04 | 04 | 05 | 0.6 0.6 0.7 0.8
135 03 | 04 | 04 | 05 | 05 0.6 0.7 0.8
157.5 03 | 04 | 04 | 05 | 05 0.6 0.7 0.8
180 03 | 04 | 04 | 05 | 05 0.5 0.7 0.8
202.5 04 | 05 | 05 | 0.6 | 0.6 0.6 0.7 0.8
225 04 | 04 | 05 | 06 | 0.6 0.6 0.7 0.8
247.5 0.3 04 | 04 | 05 | 05 0.5 0.7 0.8
270 03 | 04 | 05 | 05 0.5 0.6 0.8
292.5 03 | 04 | 05 | 05 0.5 0.6 0.8
315 03 | 0.3 | 04 | 05 0.5 0.6 0.7
3375 04 | 04 | 05 | 05 0.5 0.6 0.8
Table 5.8 Directional Extreme Near-Seabed Total Current Speed at EINS-2
° Dire ona eme Nea eabed Tota e peed 0 ea eabed
Directio D,
0 0 80 0]0 000 0000
Omni 05 | 07 | 0.7 | 0.8 | 0.8 0.8
0 05 | 06 | 06 | 0.7 | 0.7 0.8 0.9
22.5 05 | 07 | 0.7 | 0.8 | 0.8 0.8
45 05 | 07 | 0.7 | 0.8 | 0.8 0.8
67.5 05 | 07 | 0.7 | 0.8 | 0.8 0.8
90 05 | 06 | 06 | 0.7 | 0.7 0.7 0.8
1125 04 | 05 | 06 | 06 | 0.7 0.7 0.8 0.9
135 04 | 05 | 05 | 0.6 | 0.6 0.7 0.8 0.9
157.5 04 | 05 | 05 | 0.6 | 0.6 0.6 0.7 0.9
180 04 | 05 | 05 | 0.6 | 0.6 0.6 0.7 0.8
202.5 05 | 05 | 06 | 0.6 | 0.6 0.7 0.7 0.9
225 04 | 05 | 05 | 06 | 0.6 0.6 0.7 0.9
247.5 04 | 04 | 05 | 0.6 | 0.6 0.6 0.7 0.8
270 0.4 0.4 0.5 0.5 0.6 0.7 0.8
2925 04 | 05 | 05 | 0.6 0.6 0.7 0.8
315 04 | 04 | 05 | 0.6 0.6 0.7 0.8
337.5 04 | 05 | 05 | 06 | 0.6 0.6 0.8 0.9
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5.24 Maps of extreme current speed

Figure 5.13 - Figure 5.15 present the spatial variation across EINS of total
depth-averaged current speed for return periods of 1, 50 and 100 years. The
extreme values of CSy from the hindcast data at each mesh element were
calculated using traditional extreme value analysis, T-EVA (see Section 12).
The J-EVA extremes of CSi: at the five analysis locations were then used to
scale the extremes in each mesh element using the inverse distance weighting
method, see [14]. The maximum CSq Varies within about 1.10£0.15 m/s for the
100-year return period.
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Figure 5.13 Spatial variation across EINS of total depth-averaged current speed for return period of
1year
The colour map shows the current speed, and the contours show water depth.
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Figure 5.14 Spatial variation across EINS of total depth-averaged current speed for return period of
50 years
The colour map shows the current speed, and the contours shows water depth.
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Figure 5.15 Spatial variation across EINS of total depth-averaged current speed for return period of

100 years

The colour map shows the current speed, and the contours show water depth.
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6 Waves

This section presents a summary of the wave data basis established in
[1], followed by a presentation of normal and extreme wave conditions.

The wave data is adopted from the spectra wave model forced by CFSR
established for EINS (SWeins) in [2], containing total, wind-sea, and swell
partition of the sea state (separated by the wave-age criterion as defined in
Section 5.1 of [15]). The wave dataset is denoted EINS-SW-CFSR. Table 6.1
summarises the metadata of the EINS-SW-CFSR dataset.

Table 6.1 Metadata of the EINS-SW-CFSR dataset
Time series data is provided to Energinet (.csv, .mat, .nc, and .dfs0).

INETNIE | Value ‘

Dataset ID: EINS-SW-CFSR
Start Date [UTC]: 1979-01-01 01:00:00
End Date [UTC]: 2022-09-30 23:30:00
Time Step [s]: 1800

Cell Size [m]: ~400 (Island area)

The wave data is considered representative of 3-hour average sea state and is
given at 30-min interval.

The wave analyses are presented in height bins of 0. 5 m, period bins of 0.5 s,
and directional bins of 22.5°. Table 6.2 presents the variables of the EINS-SW-
CFSR dataset, incl. the bin sizes applied in analyses throughout this report.

Table 6.2 Wave variables of the EINS-SW-CFSR dataset
The wave direction is from where the wave is coming.

Variable name | Abbrev. | Unit | Bin size

Significant wave height Hmo m 0.5
Peak wave period Tp S 0.5
Mean wave period To1 S 0.5
Zero-crossing wave period Toz S 0.5
Peak wave direction PWD °N (clockwise from) 225
Mean wave direction MWD °N (clockwise from) 225
Direction standard deviation DSD ° 5

The wave analyses cover the data period 1979-09-01 — 2022-08-31 (43 years),
a round number of years, which is preferrable for extreme value analyses. The
normal conditions apply a 30-min interval (as the hindcast models), while the
extreme conditions (J-EVA) apply a 1-hour interval (as native in CFSR).

The main body of this report presents results at EINS-2 (the location of max
Hmo), while results at all analysis points are given in the data reports (listed in
Table 11.1) which are attached to this report. The data reports contain all
(scatter) tables and figures presented below.
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6.1 Normal wave conditions

The normal wave conditions are presented in terms of:
e Time series

Wave rose

Histogram

Monthly statistics

Directional statistics

Scatter diagrams (Hmo)

Wind-wave misalignment

Assessment of wave spectra, see Part A, [1].

Maps of mean Hmo

6.1.1 Time series

DHI)

Figure 6.1 show time series of the total, wind-sea, and swell partition of Hmo,
Tp, and T2 at EINS-2 during the 43 years hindcast period. The mean is 1.94 m,

and the maximum is 11.22 m (6" Nov. 1985).

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m) s tor oY
Time series (1979-09-01-2022-08-31; At=30min; t=3h) EINS-SW-CFSR 753887  1.29 0.00
12 T T T T T T T T T T T T T T T T T T T T T 753887 1.31 0.05
_ 10
E 8 H
> 6 HmO
IE 4 | i m0,Sea
g ; L . ‘ Y 4 : HmQSde
N D O A DN DO NSNS B A O N D B A9 A
FEFEFEFSS TS E S S S S S S
N MEAN MIN
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Figure 6.1  Time series of Hmo, Tp, and Toz at EINS-2
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6.1.2 Wave roses

Figure 6.2 to Figure 6.4 show wave roses at EINS-2 based on Hmno and MWD
for total, wind-sea and swell respectively. As typical for the North Sea, the
waves arrive primarily from the northwest, reflecting the direction that is open
to the North Atlantic, and allows swell to enter the North Sea. Waves from
easterly directions occur less than about 20% of the time.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)

EINS-SW-CFSR
N = 753887
Hmo [m]

MWD [°N-from]
[0>=6 (0.84%)
[055-6
5-55
[45-5
[4-45
l35-4
W3-35
W25-3
B W2-25
: Wi5-2
; Wi-15
. SOUTH ... <1 (21.42%)

Figure 6.2  Wave rose at EINS-2; Hyno vs MWD — Total

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=3h) Omni
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o 5 W2-25
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: Wi-15

SOUTH ... <1 (52.03%)

Figure 6.3  Wave rose at EINS-2; Hyno vs MWD — Wind-Sea
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Rose plot (1979-09-01-2022-08-31; At=30min; t=3h) Omni
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Figure 6.4  Wave rose at EINS-2; Hno vs MWD — Swell

6.1.3 Histogram
Figure 6.5 shows a histogram of Hmo at EINS-2.
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Figure 6.5  Histogram of Hno at EINS-2
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6.1.4 Monthly statistics
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Figure 6.6 shows monthly statistics of significant wave height, Hmo, at EINS-2.

The mean varies from 1.4 m during summer to 2.5 m during winter. The
highest waves occurred during the months of Nov., Dec., and Jan.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
(197192—09—01 -2022-08-31; At=30min; t=3h), EINS-SW-CFSR, Monthly

11 K. S 4 |mre MEAN

100 N\ 7 1 + +-STD

Figure 6.6  Monthly statistics of significant wave height at EINS-2

6.1.5 Directional statistics

Figure 6.7 shows directional statistics of significant wave height at EINS-2. The
mean is highest from the northwest at about 2.1 m, and lowest from north at

about 1.2 m. The highest waves occur from the north-western sector.

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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Figure 6.7  Directional statistics of significant wave height at EINS-2
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6.1.6 Scatter diagrams (Hmo)

This section presents scatter diagrams of Hmo against the following other
metocean parameters at EINS-2:

e Figure 6.8 WSi10 vS. Hmo
e Figure 6.9 Hmo vs. Tp

e Figure 6.10 Hmo vS. To2

e Figure 6.11 Hmo vs. WL

e Figure 6.12 Hmo vs. CS

Each scatter diagram includes quantiles and functional fits to the 95%-tile
highest data (except for WL and CS).

The scatter of WS10 vs Hmo shows a reasonable correlation, albeit with some
scatter due to the (co-)occurrence of swell in the North Sea.

The wave periods (T, and To2) are very well correlated with Hmo, especially for
the high waves that are dominated by local wind.

There is a weak correlation between WL (total) and Hmo, indicating a slight
trend of positive high water during high waves.

The total current speed (CS) is almost entirely uncorrelated with Hmo, albeit
there is a weak trend of stronger currents during high waves, but with
significant scatter.
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
chlﬁzer: (1979-09-01-2022-08-31; At=30min; t=2h) Omni 450

f r
400
11+
[ 350 £
10 1
o % 300 ¢
woo9r ) 250 =
Q st 200 5
= &
0w 7 150 2
& =
Z 67 100 £
Yot 8
— g
£ 4 50 8
o 5
E 34 =
T S
:
1
0 1

© V> O D INORRP AP AOD el
WS, [m/s] - EINS-AT-CFSR

® Data points (N = 753887)
m--=H L, =0.048xWS 4%
m-==H . =0.067xWS] 1%
== == H_, g5 =0.081xWS]HP

X Quantiles: 2.5% ; 50% ; 97.5%

Figure 6.8  Scatter diagram of WS1o vS Hmo at EINS-2
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Figure 6.9  Scatter diagram of Hmo vs T, at EINS-2
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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Figure 6.10 Scatter diagram of Hmo Vs To2 at EINS-2

The expert in WATER ENVIRONMENTS 54



DHI)

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
Scatter (1979-09-01-2022-08-31; At=30min; t=3h) Omni

400
1 g i -1 360
1:5 1 320
14 - 280
-
o 1.2 4240 &
) 1 £
LL 08 200 g
Q 0 S
o 06 160 5
L 04 S
1 4k
2 02 120 £
T £
. -0.2 830 2
o -0.4 g
= -06 o
E o8 40 2
= 4 2
= z
12 >
14 ¢
16+
18+F
2+

O NDY D X © o0 A D OO N0
HmU [m] - EINS-SW-CFSR

® Data points (N = 753887)
X Quantiles: 2.5% ; 50% ; 97.5%

Figure 6.11 Scatter diagram of Hmo vs WL at EINS-2
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EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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Figure 6.12 Scatter diagram of Hmo vs CS at EINS-2
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6.1.7 Wind-wave misalignment

The wind-wave misalignment is calculated as WD1o minus the MWD. Figure
6.13 presents the misalignment vs. WS1g at EINS-2. The curves indicate the
mean misalignment for each wind direction sector. The misalignment shows
high scatter for wave height less than ~3 m, while the scatter (misalignment) is
relatively low for higher waves when the wind starts to pick up because
extreme waves in the North Sea are generally dominated by the local wind.

Figure 6.14 shows a trend of most frequent misalignment between 0 — 22.5°.
For omni and almost all directions the main probability of misalignment is within
+45. Hence, the wind and wave directions are generally reasonably aligned.
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Figure 6.13 Wind-wave misalignment vs. Hno at EINS-2

EINS-2 (6.594444°E; 56.489400°N; d=29.1mMSL; L=443m)
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Figure 6.14 Probability of wind-wave misalignment per direction at EINS-2
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6.1.8 Swell waves

This section presents a qualitative assessment of wind-sea and swell waves.
Figure 6.1 presents time series of the total, wind-sea, and swell partition of Hmo
at EINS-2, and Figure 6.15 presents a scatter plot of Hmo,swell VS Hmo. The
figures show a predominance of wind-sea for the higher sea states.

Figure 6.16 presents the average ratio of wind-sea to total energy (blue) and
swell to total energy (orange), (the energy being proportional to the square of
Hmo). For the lower sea states (Hmo < 2.5 m, which occurs ~75% of the time),
the swell partition is responsible for more than half (50-80%) of the total wave
energy, while for moderate sea states (2.5 m < Hmo < 7.0 m, which occurs
~25% of the time) the wind-sea partition is responsible for the majority (50-
90%) of the energy.

For the very highest sea states (Hmo > 7.0 m, which occurs <0.3% of the time),
the swell partition constitutes less than 15% of the total energy. Such
guantification obviously depends on the chosen separation criterion between
wind-sea and swell (in this case the wave-age, see Section 5.1 of [15]), and it
should be considered whether this criterion is suitable for the purpose in mind.
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Figure 6.15 Scatter plot of Hmo,sweil VS Hmo at EINS-2
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Figure 6.16 Average ratio of wind-sea to total energy (blue) and swell to
total energy (orange) vs. Hmo (total) at EINS-2

6.1.9 Assessment of wave spectra

Assessment of wave spectra is addressed in Part A, [1]. For moderate and
severe sea states, Hmo > 1.5 m, the spectrum is often single-peaked and can
be well represented by a JONSWAP spectrum. For information on JONSWAP
gamma values, it is recommended to apply the guidelines in Section 3.5.5 of
RP-C205 [16], i.e. defining ¥ based on T, and Hmo. For low sea states, Hmo <
1.5m, the spectra are often bi-modal, and should be represented by a
JONSWAP spectrum for each of the wind-sea and swell partitions separately.
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6.1.10 Maps of mean Hmo

DHI)

Figure 6.17 and Figure 6.18 present maps across the EINS site of the weighted
mean significant wave height, Hmo, calculated as follows.

N 1
. m m
Hmo = N.E Hmo;
=1

(6.1)

where m = (1,2) is the power coefficient, and N is the total number of hindcast
data points (m = 1 is the mean Hmo, while m = 2 is the mean wave energy).

There is little variation across the EINS site with Hmom=1 of about 1.9 m.
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Figure 6.17 Spatial variation of Hmo across the EINS site for m = 1

DHI2023-566-AGH.

The colour map shows the wave height, and the contours show water depth.
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Figure 6.18 Spatial variation of Hmo across the EINS site for m = 2
The colour map shows the wave height, and the contours show water depth.

The expert in WATER ENVIRONMENTS 61



DHI)

6.2 Extreme wave conditions

The extreme current conditions are estimated following the steps outlined in
Appendix D: J-EVA Summary. The input time series is from the SWeins model.
The storm events selected for the J-EVA analyses are based on the directional
and seasonal variability (see Section 14.2.1) with filtering carried out using
combined criteria of regression quantile and inverse wave age > 0.5 that is
applied on the combined normalised storm events comprising of Hmo, CSres,
and WS. The combination of the time series is carried out to not miss out on
peak events of associated variables (CSres and WS) in case there is a small
time shift in their peak events with respect to Hmo. The resulting ‘retained’ and
‘removed’ events are shown in Figure 6.19.
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Figure 6.19 Selected events for the significant wave height Hyno and wind
speed WS at EINS-2.
Events above the combined criteria of regression quantile and
inverse wave age > 0.5 are retained for the J-EVA analysis.
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6.2.1 Extreme significant wave height, Hmo

This section provides the directional extremes of the marginal wave
parameters and conditioned variables.

A J-EVA statistical model (see Section 14.3) has been set up for extreme wave
heights and conditioned (associated) variables, followed by simulation,
including the directional scaling (see Section 14.4) to estimate the extremes.
The storm model mean wave direction (MWD) and season have been used as
co-variates and the model fitted to characteristic storm variable values
(Hmo,peqs IN Oeq , T, €tC.). Furthermore, for the long-term distribution, the Hmo,p,eq
(equivalent peak Hmo from the storm model) has been limited to 0.6 times the
water depth (see Section 14.7).

Figure 6.20 shows the best estimate of Hno using the integrated parameters of
the posterior predictive distribution of Hno from an 80,000-year simulation,
which is used to calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100-
year return periods. Best estimates for larger return periods are calculated
based on simulating up to 4 x 108 years of events, where the minimum number
of exceedances Ne = 25 is chosen for the 80,000-year return period.

The extreme values are presented (Table 6.3 - Table 6.13) for a maximum
return period of 10,000- year. The figure also shows joint distributions of
conditioned variables to Hmo, such as wave periods (Tp, To2), residual water
level (WLres) and residual current speed (CSyes). These subplots show hindcast
data in black points with the simulated values from J-EVA in the coloured dots,
where ‘cooler’ colours indicate a lower number of exceedances. Derived
contours pertaining to return periods of 1, 5, 10, 50, 80 and 100 years are
outlined in grey.
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Figure 6.20 Estimates of marginal and conditioned variables from 10,000-
year simulation at EINS-2.
Hindcast data is presented as black markers. The blue solid line
(top-left) is the best estimate of Hmo using the distribution parameters
that are integrated over the posterior distribution. The blue shaded
area (top-left) is the 2.5-97.5 % credible interval. Contours of
conditioned variables shown as coloured dots from the result of a
simulation of 10,000 years using the distribution parameters from the
posterior predictive distribution at different return periods are shown
for Tp (top-right), To2 (third row left), WLres (second row left), and
CSres (second row right) against Hmo. Black dots show original
hindcast. Warmer colours indicate a higher density of points.
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Figure 6.21 shows the directional annual number of exceedances of the
significant wave height estimated from an 80,000-year simulation, which is
used to calculate the best estimate for 1-, 5-, 10-, 50-, 80-, and 100-year return
periods (The 45-degree bins presented here are for visual inspection of
directional fits. The final directional values are based on 22.5-degree bins).

The best estimate predicts the significant wave height very well, as indicated
by the good fit between the hindcast data (black line) and best estimate (blue
line). The prediction in different directions is also good.

Annual no. of exceedances

107!
10°
10°
10°

10°

Annual no. of exceedances

107
10°
10’

10°

10°

Annual no. of exceedances

NW N NE
107 107!
10° 10°
10 10"
10? 10
10° 10°
0 5 10 0 5 10 0 5 10
w N E
NWY E 10!
10°
w E 10!
10°
SW SE 10°
0 5 10 S 0 5 10
sW s SE
107! 107!
10° 10°
10' 10
107 10°

Annual no. of exceedances

10°F

10'F

Figure 6.21

The expert in WATER ENVIRONMENTS

Directional exceedance probability of Hmo.

Hindcast data is shown in black. The blue line is the best estimate
using the integrated posterior distribution parameters. The shaded
area is the 2.5-97.5% credible interval.
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Table 6.3 provides the values of the directional significant wave height. The
directional extreme values are scaled according to DNV-RP-C205, [3].

Warmer colours (red) indicate larger values. Large values of Hmo are observed
in the west and north-west directions, mainly due to large fetch as seen in
Figure 1.1.

Table 6.3 Extreme significant wave height, Hmo, at EINS-2

eme sig a ave neig 0
Re Period, Tr|yea
D [° 0 0 0 80 00 0[0]0 0,000
Omni 81 |97 | 103 | 116 | 120 | 121
0 69 | 7.4 8.6 8.9 9.1 105 11.6
22.5 6.3 | 6.7 7.5 7.8 7.9 9.0 10.1
45 6.2 | 6.6 7.3 7.5 7.6 8.5 9.3
67.5 5.9 6.6 6.7 6.8 7.6 8.3
90 6.3 6.5 6.6 7.3 8.0
1125 5.8 6.4 6.6 6.6 7.5 8.2
135 59 | 6.2 6.9 7.1 7.2 8.1 9.0
1575 6.6 | 7.0 7.8 8.0 8.1 9.2 10.2
180 6.6 | 7.6 | 8.0 8.8 9.0 9.1 10.1 11.3
202.5 75 | 85| 88 9.6 9.8 9.9 11.0 11.9
225 79 | 89 | 93 101 | 103 | 104
2475 81 95| 99 109 | 111 | 112
270 81|97 | 103 | 116 | 119 | 120
2925 81 |97 | 103 | 116 | 120 | 121
315 81|97 | 103 | 116 | 120 | 121
3375 81 |97 | 103 | 116 | 120 | 121
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6.2.2 Maps of extreme Hmo

Figure 6.22 to Figure 6.24 present maps of extreme Hmo across the EINS
island area for return periods of 1-, 50-, and 100 years. The extreme values of
Hmo from the hindcast data at each mesh element are calculated using T-EVA.
The J-EVA extremes of Hmo at the five analysis locations are then used to
scale the extremes in each mesh element using the inverse distance weighting
method, [14]. The maximum Hmo of 11.2 and 11.6 m varies within about £1 m
for the 50- and 100-year return period.
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Figure 6.22 Spatial variation across EINS of Hmo for return period of 1 year
The colour map shows the wave height, and the contours show water depth.
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The colour map shows the wave height, and the contours show water depth.
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Figure 6.24 Spatial variation across EINS of Hno for return period of 100 years

The colour map shows the wave height, and the contours show water depth.
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6.2.3 Variables conditioned on Hmo

The correlation between Hmo and other variablesis presented in Figure 6.20 for
the 80,000-year simulated storms in J-EVA.

The conditioned variables are obtained by selecting the 250 simulated events
that are closest to the annual maxima for each return period, and then finding
the 2.5%, 50%, and 97.5% quantile of the conditioned variable in each event.
From this method, the conditioned variables do not necessarily increase
smoothly with increasing return period, and therefore a fit to the conditioned
variables was applied to obtain a robust estimation.

Power or linear functional forms are applied to the range of return periods.
Here, Y’ denotes the variable conditional on Hmo, while ‘a’ and ‘b’ are fitted
parameters.

Wave periods (Tp, Toz,

THmax), and current speed Yirmo = @-Hmo” (6.2)
(Cs):
WLiot: Y|Hm0 = a-HmO +b (63)

The following tables present the 50 %-tile values of the conditioned variables,
while 2.5, 50 and 97.5 %-tile values at all analysis points are provided in the
Excel Data Reports (listed in Table 11.1) attached to this report.

It is noted that for conditioned variables the directional values can sometimes
exceed that of omni. This could fx be in case omni waves are dominated by
wind-sea, while a certain sector is dominated by swell. In this case the swell-
dominated directional sector will higher (conditional) T, than omni.
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Figure 6.25 shows the extreme Hmo for each return period against T, and fit
based on (6.2), while Table 6.4 provides the 50 %-tiles of Tpjumo at EINS-2.

Tp conditioned on Hmo

—-2.5 % J-EVA estimate

- - 2.5 % fitted

—+—50 % J-EVA estimate

-*- 50 % fitted
—=-97.5 % J-EVA estimate

12 -3~ 97.5 % fitted

Hmo

Figure 6.25 Omni T, conditioned on Hmo, Tpmo at EINS-2

Table 6.4 T, conditioned on Hmo, Tpjumo 50% at EINS-2

Pea ave period conditioned o 0 0 0%
Re Period R ea
D [° 0 0 0 80 0[0) 0[0]0 0,000
omni 13.2 14.7 | 153 | 16.4
0 114 | 13.0 | 13.6 | 14.9 15.2 | 154
225 10.6 115 | 118 | 124 | 126 | 12.7 134 14.2
45 109 | 111 | 116 11.8 | 11.8 12.4 12.9
67.5 104 | 10.5 111 11.6
90 10.4 10.9
112.5 10.6 111
135 10.6 10.8 | 10.9 11.6 12.3
157.5 108 | 11.2 | 11.9 121 | 12.2 13.1 13.9
180 11.0 119 | 12.3 | 13.0 13.1 | 13.2 141 15.0
202.5 11.9 12.7 | 131 13.8 13.9 | 14.0 14.9 15.6
225 124 | 13.3 | 13.6
2475 12.6 138 | 141
270 13.0 144 | 14.9
292.5 13.2 146 | 152
315 13.6 15.0 | 15.6
337.5 13.8 15.3 | 159
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Figure 6.26 shows the extreme Hmo for each return period against Toz and fit
based on (6.2), while Table 6.5 provides the 50 %-tiles of ToHmo at EINS-2.

Toz conditioned on Hmo

—5-2.5 % J-EVA estimate
-43- 2.5 % fitted
9 ——50 % J-EVA estimate
- -- 50 % fitted
—5-97.5 % J-EVA estimate
-3- 97.5 % fitted

I 1 I I I L
8 9 10 1" 12 13 14
HmoO

Figure 6.26 Omni Toz conditioned on Hmo, TozHmo at EINS-2

Table 6.5 Toz conditioned on Hmo, TozjHmo 50% at EINS-2

Toz conditioned on Hmo, TozjHmo [S] 50%

Return Period, Tr

MWD [°N-from]

22.5 71 | 7.6 7.8 8.2 8.3 8.3 8.8 9.2

45 7.2 7.3 7.6 7.7 7.7 8.1 8.3
67.5 7.1 7.1 7.2 7.5 7.8

90 7.3 7.5
1125 7.3 7.6
135 7.2 7.2 7.3 7.7 8.0
157.5 7.2 7.4 7.8 7.9 7.9 8.4 8.8
180 74 | 79 8.1 8.4 8.5 8.6 9.0 9.5
202.5 8.0 | 84 8.6 9.0 9.1 9.1 9.6 9.9
225 8.3 | 838 8.9 9.3 9.4 9.4 9.9 10.2
2475 85 | 91 9.3

270 87 | 94 9.7
292.5 89 | 9.7 10.0

315 9.1 | 10.0 | 10.3
337.5 9.3 | 10.3 | 10.6
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Figure 6.27 shows the extreme Hmo for each return period against WL and fit
based on (6.3), while Table 6.6 provides all %-tiles of WLHmo at EINS-2. For
the 2.5%-tile, a negative trend was observed, in which case a mean value is
applied across all return periods.

WL+t conditioned on Hmo

—=-2.5 % J-EVA estimate
-3-2.5 % fitted

—+—50 % J-EVA estimate
-#- 50 % fitted

—£-97.5 % J-EVA estimate
0.6 - 13- 97.5 % fitted

08~ o L

Hmo

Figure 6.27 Total WL conditioned on Hmo, WLiotjumo at EINS-2

Table 6.6 Total WL conditioned on Hmo, WLiotjsmo at EINS-2

WLtot conditioned on Hmo, WL totjHmo [M]

Return Period, Tr

2.5%-tile 50%-tile 97.5%:-tile
[years]
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Figure 6.28 shows the extreme Hmo for each return period against CSres and fit
based on (6.2), while Table 6.7 provides all %-tiles of CSresjHmo at EINS-2.

CSies conditioned on Hmo

—=-2.5 % J-EVA estimate

-~ 2.5 % fitted

—+—50 % J-EVA estimate

-*- 50 % fitted

—=-97.5 % J-EVA
- 3-97.5 % fitted

Figure 6.28 Residual CS conditioned on Hmo, CSresjtmo at EINS-2

Table 6.7 Residual CS conditioned on Hmo, CSresjHmo at EINS-2

CSres conditioned on Hmo, CSresjHmo [M/S]

Return Period, Tr

2.5%-tile 50%:-tile
[years]
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Figure 6.29 shows the extreme Hmo for each return period against CSitand fit
based on (6.2), while Table 6.8 provides all %-tiles of CStoHmo at EINS-2.

CSiot conditioned on Hmo

—=-2.5 % J-EVA estimate
- - 2.5 % fitted

—+—50 % J-EVA estimate
-#- 50 % fitted

1 -2-97.5 % J-EVA estimate
- G- 97.5 % fitted

PO -

15
HmO

Figure 6.29 Total CS conditioned on Hmo, CSiotnmo at EINS-2.

Table 6.8 Total CS conditioned on Hmo, CStotjumo at EINS-2.

CStot conditioned on Hmo, CStotjHmo [M/S]

Return Period, Tr

2.5%-tile 50%-tile 97.5%-tile
[years]
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6.2.4 Extreme maximum wave height, Hmax

The extreme maximum wave heights, Hmax, were derived based on the
Glukhovskiy short-term wave heigh distribution (given in Section 1.3 in
Appendix C: T-EVA — Traditional EVA) that considers the local water depth.
The choice of the short term distribution is discussed and justified in Section
6.2.1 of [1].

Table 6.9 presents the directional extreme Hmax values. The directional
extreme values are scaled according to DNV-RP-C205, [3]. The values have
been truncated to account for wave breaking and limitations in accordance with
Section 6.2.6.

Table 6.9 Extreme maximum wave height, Hnax, at EINS-2

Re Period, Tr |yea
D [° 0 0 0 80 0[0 0[0]0 0,000
Omni 147 | 17.2 | 18.2 | 20.3
0 126 | 184 | 152 | 15.7 | 15.9 18.1 20.4
22.5 11.7 | 125 | 141 | 145 | 146 16.5 18.3
45 11.8 | 124 | 13.7 | 141 | 143 16.0 17.8
67.5 113 | 126 | 13.0 | 13.2 14.7 16.3
90 12.1 | 125 | 127 141 15.8
112.5 122 | 125 | 127 14.4 16.1
135 111 | 116 | 129 | 13.2 | 134 15.2 17.2
157.5 122 | 128 | 141 | 144 | 146 16.6 18.9
180 119 | 136 | 142 | 156
202.5 135 | 151 | 158 | 17.2
225 14.1 | 158 | 16.5 | 17.9
247.5 147 | 16.6 | 17.3 | 18.8
270 147 | 17.2 | 18.2 | 20.0
292.5 147 | 172 | 18.2 | 20.3
315 147 | 17.2 | 18.2 | 20.3
337.5 147 | 172 | 18.2 | 20.3
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Figure 6.30 shows the extreme Tumo for each return period against Hmax and fit
based on (6.2), while Table 6.10 provides 50 %-tiles of Trmax at EINS-2.

16~

THmax

12

10

—=-2.5 % J-EVA estimate

- G- 2.5 % fitted

—#—50 % J-EVA estimate
-#- 50 % fitted

—5-97.5 % J-EVA estimate
-G3-97.5 % fitted

14

Hmax

Figure 6.30 Omni Tumax conditioned on Hmax, Thmax at EINS-2
Table 6.10  Thmax conditioned on Hmax, THmax at EINS-2
ond ed a 0%
R Perioa ea
D 0 0 80 00 000 0,000
Omni 114 | 125 | 13.0
0 11.3 11.7 12.5 12.8 12.9 13.9
22.5 10.0 | 10.3 | 109 | 111 | 111 11.9 12.5
45 9.4 9.7 10.1 | 10.3 | 10.3 10.9 114
67.5 9.1 9.3 9.3 9.8 10.2
90 8.8 8.9 9.3 9.8
1125 8.8 8.8 9.3 9.7
135 9.3 9.4 9.5 10.0 10.7
157.5 9.4 9.6 10.1 10.3 10.3 11.0 11.8
180 9.7 10.3 10.5 11.0 11.1 11.2 11.7 12.3
202.5 104 | 110 | 112 | 11.7 | 118 | 11.9 12.5 13.1
225 10.8 11.4 11.6 12.0 12.1 12.2 12.9 13.1
247.5 111 | 11.8 | 12.0 | 125 | 126 | 12.7 13.5 13.7
270 11.5 12.4 12.7 13.2 13.4 13.4
292.5 119 | 12.8 | 13.1 | 13.8
315 12.0 | 13.1 | 13.5
337.5 12.2 13.3 13.7 14.4
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6.2.5 Extreme maximum wave crest, Cmax

The extreme maximum wave crests, Cmax, Were derived based on the Forristall
short-term wave height distribution (given in Section 1.3 in Appendix C: T-EVA
— Traditional EVA). The choice of the short-term distribution is discussed and
justified in Section 6.2.1 of DHI [1].

The maximum wave crest is given relative to still water level, Cmax,swi., and
relative to mean sea level, Cmaxswi. The latter, Cmaxmsi, is derived by
convoluting the short-term distribution with the simultaneous (residual) water
level.

The values of Cnax, msL are provided for the construction completion (2033),
and for the design lifetime end (2113) respectively. Following Part A, [1], an
estimated sea level rise (SLR) of 0.8 m was added to the estimate of 2033
relative to the vertical reference (MSL) of today.

Table 6.11 presents the directional extreme Cmax,swi, While Table 6.12 and
Table 6.13 presents the directional extreme CmaxmsL for 2033 (construction
complete) and 2113 (end of lifetime). The directional extreme values are scaled
according to DNV-RP-C205, [3].

The values have been truncated to account for wave breaking in accordance
with Section 6.2.6.

Table 6.11 Extreme maximum wave crest relative to SWL, Cnax swe at

EINS-2
eme ma ave cre elative to
Re Period = ea
D [° 0 0 0 80 00 000 0,000

Omni 9.7 | 12.1 | 181 | 153 | 16.0 | 16.3
0 8.0 8.7 10.1 | 10.6 | 10.8 13.0 15.4
225 7.4 7.9 9.2 9.6 9.7 11.4 13.2
45 7.4 7.9 9.0 9.3 9.4 10.9 12.5
67.5 6.7 7.2 8.2 8.5 8.6 9.9 11.3
90 6.4 6.9 7.8 8.1 8.2 9.4 10.9
112.5 6.6 7.0 7.9 8.1 8.3 9.7 11.1
135 7.0 7.4 8.4 8.6 8.8 10.3 12.0
157.5 6.6 7.8 8.2 9.3 9.6 9.8 11.5 13.6
180 7.5 8.9 9.4 10.5 11.0 11.1 12.8 14.8
202.5 8.7 | 10.1 | 10.7 | 12.0 | 124 | 12.6 14.4 16.7
225 9.2 | 10.7 | 113 | 12.7 | 13.2 | 134 15.4 18.0

247.5 9.7 | 114 12.1 13.7 14.0 14.2

270 9.7 | 121 | 130 | 149 | 154 | 15.7

292.5 9.7 | 121 13.1 15.3 16.0 16.3

315 9.7 | 121 | 131 | 153 | 16.0 | 16.3

337.5 9.7 | 121 13.1 15.3 16.0 16.3
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Table 6.12  Extreme maximum wave crest relative to MSL —in 2033
(construction complete), at EINS-2
NE Period ea
. 0 0 80 00 000 0,000

Oomni 10.3 | 129 | 13.9

0 8.4 9.2 10.8 | 114 | 11.6 141

22.5 7.9 9.2 9.6 9.7 114 13.3

45 7.7 8.8 9.1 9.2 10.7 12.4
67.5 7.8 8.1 8.2 9.5 10.8

90 7.8 7.9 9.0 10.5
112.5 7.8 8.0 9.3 10.7
135 8.2 8.5 8.6 10.1 12.0
157.5 7.8 8.4 9.5 9.8 10.0 11.7 14.0
180 7.8 9.2 9.8
202.5 9.1 106 | 11.2

225 9.8 11.3 | 11.9
247.5 10.3 12.1 | 12.8
270 10.3 | 129 | 13.9
292.5 10.3 | 129 | 13.9
315 10.3 | 129 | 13.9
337.5 10.3 | 129 | 13.9
Table 6.13  Extreme maximum wave crest relative to MSL —in 2113 (end of
lifetime) at EINS-2.
Re Period R ea
0 0 0 80 00 000 0,000

omni 111 | 13.7 | 14.7

0 9.2 10.0 | 116 | 12.2 | 124 14.9

225 8.7 10.0 | 10.4 | 10.5 12.2 14.1

45 8.5 9.6 9.9 10.0 115 13.2
67.5 8.6 8.9 9.0 10.3 11.6

90 8.6 8.7 9.8 11.3
1125 8.6 8.8 10.1 115
135 9.0 9.3 9.4 10.9 12.8
157.5 8.6 9.2 10.3 | 10.6 | 10.8 12.5 14.8
180 8.6 10.0 | 10.6 | 11.8 | 12.2 | 124 14.0 16.0
202.5 9.9 114 | 12.0 | 134 | 138 | 14.0 15.8

225 10.6 12.1 | 12.7 14.1 14.7 | 14.9 16.8
247.5 111 | 129 | 136 | 15.2 | 155 | 15.8

270 11.1 13.7 | 14.7 | 16.6
292.5 11.1 | 13.7 | 14.7

315 11.1 13.7 | 14.7
337.5 11.1 | 13.7 | 14.7
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6.2.6 Wave breaking and limitations

The extreme Hmax (Table 6.9) and Cnax (Table 6.11) were derived following the
Glukhovskiy and the Forristall short-term distributions respectively. The
extreme distribution of Hmo (see Figure 6.20) did not indicate any upper limit.
However, in practice, the highest waves are limited by the wave height to water
depth ratio or wave steepness (height to length ratio). The water depth and
wave periods of extreme sea states at EINS are such that shoaling is non-
negligible. This means that the average wave steepness will increase and
consequently that the probability of wave breaking will increase.

This section aims to address the occurrence/likelihood of wave breaking and to
quantify the limiting individual wave height and wave crest conditions. This is
sought by evaluating the magnitude and range of the individual wave period
conditioned on Hmax, THmax, and by visiting the below common wave breaking
criteria, followed by final recommendations on wave breaking and limitations.

e DNV RP-C205, [3] — Steepness-induced breaking (regular waves)
e DNV RP-C205, [3] — Depth-induced breaking (shallow water)
e Fenton, [17, 18] — Stream Function (monochromatic wave on a flat seabed)

e Paulsen, [19] — Steepness and non-linear crest height to water depth ratio

Individual wave period conditioned on Hmax, THmax

The individual wave period conditioned on Hmax, Thmax, IS fundamental for the
steepness-induced breaking. The period will vary because of varying sea state
characteristics (variability of T, given Hmo) but also because of the randomness
of the sea state itself. The variability of Thmax against Hmax is assessed, using
the following three approaches/datasets, and comparing to DNV RP-C205.

1. Figure 6.32: Scatter plot of measured Thmax VS. Hmax at EINS-
Island (Mini 1), and fit to values above Hmax,95%.

2. Figure 6.33: The most probable period, J-EVA (linear new
wave, see Section 15.5.1) at EINS-3 (close to
EINS Island measurements).

3. Figure 6.34: Linear simulations of the surface elevation based
on modelled spectra and zero-crossing at EINS-3.

According to Section 3.7.4 in DNV RP-C205, [3], the most probable Thmax to be
used in conjunction with long term extreme wave height Hmax, may be taken as
given by Eq. (6.4), or alternatively Eq. (6.5). Tumax used in conjunction with Higo
should be varied in the range given by Eq. (6.6).

Tymax = 0.9 T, (6.4)

— 4.H4b
THmax_a Hmax

where a and b are empirical coefficients. For the southern part of the (6.5)
Norwegian Continental Shelf, a = 2.94, and b = 0.5 may be applied.

255 " 1/H100 S THmax S 332 " HlOO

Where Higo is the 100-year individual wave height, Hmax 100yr

(6.6)
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The highest measured individual wave was during storm Malik with Hmax 0f 19
m and Thmax Of 14.6 s, see Figure 6.31 (left). The second highest measured
wave had Hmax of 17 m and Thmax Of 14.3 s on 2021-12-01, but it is likely an
erroneous recording, and was removed from the analysis, see Figure 6.31

(right).

: 15
151 ;
] 10
101 5
1130 1130 21:26:47 00:28:07
2022-01-29 01-30 2021-11-30 12-02

Figure 6.31 Time series of the two highest measured Hmax (and Thmax)-
Left: Storm Malik. Right: is Likely an erroneous recording.

The above approaches were evaluated using the 50%-tile Tpjxmo,100yr = 15.7 S
and Hmax,100yr = 18.8 m as estimated at EINS-3, the analysis point close to
EINS Island (shown by orange lines in Figure 6.32 to Figure 6.34).

The results show a very good agreement between the measured and the most
prObable (J'EVA) THmax’]_OOyr. Eq (64) (DNV by Tp) glveS hlghel’ THmaxy]_OOyr,
while Eq. (6.5) (DNV by Hmax) gives lower Thmax,100yr for EINS-3:

o Eq. (6.4) (DNV by Tp): Thmax = 14.1s
° Eq (65) (DNV by Hmax): THmax = 127 S
o Eq. (6.6) (DNV range): Thmax = [11.1 —14.4] s

e Figure 6.32 (based on measured fit): Timax = 13.7 S
e Figure 6.33 (most probable, J-EVA): Thmax =13.3 S

e Figure 6.34 (from modelled spectra): Thmax =129 s

All the central estimates are within the DNV range given by Eq. (6.6), but the
range of the 2.5 and 97.5%-tiles of the most probable (J-EVA) Tumax and the
2.5 and 97.5%-tiles of the measurements are both larger than the DNV range.

The DNV range is £1.7 s (i.e. a factor 3.32/2.94 = 1.13), which agrees roughly
with the corresponding ~87/13%-tiles of the measurements (Figure 6.32) and
models (Figure 6.33). Such range (factor of 1.13) of the wave period could be
an (upper bound) candidate as input to steepness-based breaking criteria.
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Figure 6.32 Scatter plot of measured Thmax VS. Hmax at EINS-Island (Mini 1)
Orange line: Hmax,100yr = 18.8 m.
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Figure 6.33 Omni Tumax conditioned on Hmax at EINS-3 (from J-EVA)
Orange line: Hmax,100yr = 18.8 m.
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EINS-3
Associated T (1979-09-01-2022-08-31; At=1h) Omni

Max. H in seastate and associated T
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Figure 6.34 Scatter plot of modelled Thmax VS. Hmax at EINS-3
Orange line: Hmax100yr = 18.8 m.

DNV RP-C205, [3] — Steepness-induced breaking (regular waves)

A commonly adopted criterion for steepness-induced wave breaking limit is
given in Section 3.4.6.1 of DNV RP-C205, [3], see Eq. (6.7) and Figure 6.35.
This criterion is applicable to regular waves on a plane seabed.

However, the extreme waves at EINS are not regular, and it is well known that
irregular and spread (short-crested) sea states can support higher waves;
hence such a method should only be used with adequate mitigation measures.
Hp _ . 2md
— = 0.142- tanh = (6.7)
Where A is the wavelength corresponding to water depth d. In deep water, the
breaking wave limit corresponds to a maximum steepness of Smax = Ho/A = 1/7.

DNV RP-C205, [3] — Depth-induced breaking (shallow water)

A common criterion for depth-induced wave breaking limit is given in Section
3.4.6.2 of DNV RP-C205, [3], and Section B4 in IEC-61400-3-1, [6], see Eq.
(6.8) and Figure 6.35. This criterion is applicable in shallow water (d < 1/20 A).

However, the water depths at EINS are not shallow according to the common
definition of d < 1/20 A, albeit the extreme waves will certainly ‘feel’ the seabed;
hence such method should only be used for reference at EINS.

Homasx1im = 0.78 -d (6.8)

A (potentially cautious) approach would be to use the 97.5%-tile of the
conditioned water level to Hmo, WL j1mo,97.5%, added to the water depth, d.

The wave crest in shallow water can be capped using the same criterion by
anticipating a ratio of 0.85 between the wave crest and wave height (based on
stream function, see Table 6.14).
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Fenton, [17, 18] — Stream Function (monochromatic wave on a flat seabed)

In this section, Fenton’s stream function theory was applied to quantify the
limiting wave height (Hm), and wave crest (Cm), of a monochromatic wave given
the total water depth (d) and the wavelength (A) (or wave period), [17, 18], see
Eq. (6.9). Using stream function theory means that Cr, and Hny, occur in the
same individual wave, which is not necessarily the case in real sea states.

_ A A2 _ AN
0.141063 = +0.0095721 ( = | +0.0077529 =

m

A A\ 2 AN\ .
1+0.0788340 = + 0.0317567 (EI +0.0093407 (E) (6.9)

Figure 6.35 shows common limiting wave heights of regular wave theory, along
with that of stream function; the figure is adopted from IEC-61400-3-1, [€].

H

of 2
0,05
Deep water breaking limit
HIL=0,14
002 —
0,01 —
09 Hy
0,005 —

Stokes’ 5" or

Shallow water
stream function 3

breaking limit
Hld=0,78
0,002 —
0,001 —
0,000 5 —
4 Stream function
0,000 2 — L Linear/Airy or
N stream function
0,000 1 —
0,000 05 -
I I I I I I I d
0,001 0,002 0,005 0,01 002 0,05 0,1 02 _T2
) g
Waves: shallow water | Intermediate depth _ | Deep water,
>

Figure 6.35 Limiting wave heights of regular wave theory; from [6]
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The water depth is taken as the mean water depth plus the 97.5%-tile of the
total water level conditional on Hmo (WLtoyHmo,07.5%), and the wave period is
taken as the 97.5%-tile wave period conditional on Hmax (THmax,97.5%). These
inputs are conservative in the sense that lower values (shallower water or
shorter wave period) would lead to lower limiting wave height. Figure 6.36
shows the limiting (10.000-yr) stream function wave at EINS-2.

X 0.19511 e
Y 18,7313
Z16.1658

150 100 50 0 50 100 150

Figure 6.36 Limiting (10.000-yr) stream function wave at EINS-2 (analysis
point with highest Hmax).

Table 6.14 summarises the limiting (10.000-yr) wave height (H,,) and wave
crest (C,,) according to stream function at EINS-2 using the upper bound
WLtotjHmo,07.50%r &Nd THmax,97.5%-

At EINS, the stream function suggests a limiting wave height and wave crest in
between the estimated 100 and 1.000-yr Hmax and Cmax values. This means
that according to stream function theory, the estimated 1,000-yr Hmax and Cmax
cannot exist, and it can be argued that the Hmax and Cmax values for this and
higher return periods may be reduced.

However, it is noted that while stream function can represent very non-linear
(steep) waves, it does not account for directional spreading, opposing current
or uneven wave shape (the wave front being steeper than the back of the
wave). Directional spreading can lead to higher waves (compared to
unidirectional waves), and thus a stream function wave cannot be considered
an ultimate upper limit. Nevertheless, it is very rare that those values would be
exceeded, considering the rather conservative input of the 97.5%-tile
conditional water level and wave period,

In practical engineering applications, directional spreading is sometimes
compensated for by the use of a ‘directional spreading factor’ (to compensate
for not all energy of the wave spectrum travelling in the same direction).

Table 6.14  Limiting wave and crest of stream function conditioned on 97.5%-tile — 10,000-year

d WLtotjHmo,97.5

THmax,97.5% Hmax,Glukhoskiy | Hm Chmax,Forristall Cm
[MMSL] E/;nM Si] [s] [m] [m] [MSWL] [MSWL]
EINS-1 26.6 1.9 20.5 22.2 20.5 17.8 17.3
EINS-2 29.1 1.8 21.0 24.1 22.2 19.3 18.7
EINS-3 28.9 1.8 18.2 22.9 21.6 18.2 17.7
EINS-4 30.1 1.9 18.9 24.4 22,5 20.0 18.4
EINS-5 29.8 21 20.3 24.9 22.8 19.9 19.1
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Paulsen, [19] — Steepness and non-linear crest height to water depth ratio

An alternative method of estimating the breaking (probability) is given by
Paulsen et.al., [19]. They quantify the probability that a random wave in a sea
state is breaking via the sea state steepness and the non-linear crest height to
water depth ratio.

The sea state steepness is calculated based on the linear dispersion relation,
To1, and H,,o as R = ky,H,,,0, and the wave is breaking when the non-linear
crest height exceeds a limit « given by Eq. (6.10).

1
a = min <M a0h>

Bo € [0.3;0.5] (6.10)
ao = 04‘
h is the water depth, including tide and surge

Figure 6.37 compares this non-breaking wave crest criterion to the extreme

wave crests at a location in the North Sea of similar water depth to EINS (~26
mMSL). The figure shows the Forristall crest to still water level, n, against the
significant wave height, H,,, (grey line) for return periods of 1 to 10,000 years.

This is compared to the depth-limited crest (0.4 x h), Eq. (6.10), at which all
crests are assumed to break (blue line). The slight increase in increasing H,,
is caused by the increase in surge for the increasing return period. It is
observed that waves with crests above ~11 m are breaking based on this
criterion.

The green and orange lines show the limits of the steepness-based criterion.
The wave crests lie in between these limits but approach the upper limit for an
increasing return period. This is because the steepness of the sea state is
increasing for an increasing return period. This assessment supports that
breaking is to be expected at the EINS site.
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Figure 6.37 Maximum non-breaking crest height according to Paulsen et.al.,
[19], compared to the wave crests at a location in the North Sea

Recommendations on wave breaking

All the wave breaking, limitation and probability approaches described above
are prone to some general simplifications and somewhat crude assumptions
about individual waves in extreme sea states. However, there is consensus
that the higher waves will break, and as such it is recommended that wave
breaking, and related loads, are accounted for in the design of EINS.

Concerning breaker type, we do not recommend following the procedure
outlined in e.g. IEC-61400-3-1 Annex B, [6]. This approach classifies wave
breaking type as function of seabed slope and wave steepness. For most
offshore sites in the North Sea, this will classify breaking waves as spilling, and
no additional load to that of stream function theory would be accounted for.

Recommendations on wave limitations

The comparison of measured and modelled relations between Hmax and Trmax
demonstrated a very good agreement, and it showed that the estimated
individual wave periods at EINS are in line with the local measurements.

Several of the wave limitation approaches suggest that the extreme sea states
are prone to steepness- or depth-induced wave breaking. The former is
dependent on which quantile of the wave period one considers. The DNV
range for the 100-year return period, Eg. (6.6), corresponds to a factor of 1.13
times the central value of Tumax, Which is thus a candidate for such range.

In conclusion, it is recommended to use the DNV steepness criteria, Eq. (6.7),
with 1.13 times Thmax,50%, and WLumo,s0% @s input, to limit Hmax. And to limit Cmax
accordingly using a ratio of 0.85 between the wave crest and the wave height.

Table 6.15 presents the recommended limits to Hmax and Cmax for 10.000 years.
The limiting Hmax is higher than those of the stream function, but slightly lower
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than those of the DNV shallow water criteria, Eq. (6.8) for 10,000-years. The
limiting values are in between the 100- and 1,000-year return period values.

It is noted that neither regular wave theory nor stream function accounts for
directional spreading etc., which can lead to higher waves. However, using the
steepness criteria with an upper bound Thmax iS considered an optimised and
pragmatic, but still safe, approach for the individual extreme waves at EINS.

Recommended limits to Hnax and Cmax based on DNV steepness criteria, Eq. (6.7), with
upper bound (UB) as 1.13 times the 50%-tile Tumax, and the 50%-tile WL umo — 10,000-year
Using a ratio of 0.85 between the Cmax and Hmax (based on stream function, see Table 6.14).

d

W.LHmo,50%

1.13 x
THmax,50%

H max,Glukhovski

Hb,Steepness,UB

Hb,shallow,97.5%

Cb,Steepness,UB

[mMMSL] [mMMSL] [s] ’[/m] [m] [M] =078 xw1) | [M] (=0.85 x Hy)
EINS-1 26.6 1.2 17.9 22.2 22.0 22.2 18.7
EINS-2 29.1 1.2 17.5 24.1 23.6 24.1 20.1
EINS-3 28.9 1.1 16.4 22.9 22.9 23.9 19.5
EINS-4 30.1 1.2 17.2 24.4 24.1 24.9 20.5
EINS-5 29.8 1.2 17.9 24.9 24.2 24.9 20.6
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7 Other Atmospheric Conditions

This section presents analyses of other atmospheric conditions than
wind.

Other atmospheric conditions concern rainfall, air temperature, humidity, solar
radiation, lightning, and visibility.

7.1 Rainfall

7.1.1 Data

Rainfall intensity-duration-frequency (IDF) curves were estimated based on the
ERADS 1-hour resolution time series resampled over different durations (2, 3, 6,
12 and 24 hours) using a moving average procedure. The rainfall analysis was
based on the six time series, referred to as 1h, 2h, 3h, 6h, 12h and 24h rainfall
depths (measured in [mm]) and rainfall intensities (measured in [mm/h]), cf.
Section 7.1 of Part A, [1].

7.1.2 Methodology

The rainfall time series data were analysed to provide estimates of rainfall
intensities of 10 min duration for return periods of 1, 5, 10, 50, 80 and 100
years. In addition, Chicago design storms (CDS) were derived for return
periods of 5 and 100 years.

The methodology applied includes the following steps:

1. Estimation of extreme rainfall depths for the six (6) durations based on the
ERADS rainfall time series data.

2. Area correction of the extreme rainfall statistics.
3. Estimation of IDF curves covering durations from 10 min to 24 hours.
4. Determination of CDS based on the estimated IDF curves.

For estimation of extreme rainfall statistics, a partial durations series approach
was applied following the methodology used for estimation of the regional
extreme rainfall model in Denmark [20, 21]. The extreme value series was
defined by extracting the most extreme rainfall events of the 44-year record,
corresponding to 3 events on average per year (i.e., the 132 largest events on
record). A generalised Pareto distribution was fitted to the extreme value data
series. The generalised Pareto distribution includes the exponential distribution
as a special case, corresponding to a shape parameter equal to zero.

The extreme rainfall statistics estimated from the ERA5 data represent a
spatial scale corresponding to the ERAS grid cell size, i.e., approximately

900 km?. Since rainfall is not uniform, especially for extreme events, the
extreme rainfall statistics over a large area is smaller than the statistics over a
small area. Areal reduction factors (ARF) have been introduced for scaling
extreme rainfall statistics from a point to an area. The ARF is defined as:

ARF = Rainfall depth over an area (7.1)

Rainfall depth at a point
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The ARF depends on the rainfall duration with smaller ARFs for smaller
durations. To estimate extreme rainfall statistics representative for the energy
island the rainfall intensities were corrected by dividing the statistics from the
ERAS5 time series with ARFs.

ARFs have been estimated for Denmark but focus on design rainfall estimates
for urban drainage systems with areas less than 50-100 km?, [22, 23].[22, 23].
For correction of ERA5 based rainfall statistics, instead ARFs derived for the
UK published in the Flood Studies Report [24] were applied. ARFs from the UK
Flood Studies Report applied to the different durations are shown in Table 7.1.

Table 7.1 ARFs applied for correction of estimated extreme value
statistics based on ERAS rainfall data

Duration [h] ‘ ARF ‘

1 0.62
2 0.73
3 0.78
6 0.83
12 0.85
24 0.89

To extrapolate extreme rainfall statistics below 1 hour, an IDF curve was
estimated using the same IDF model as applied in the Danish design rainfall
guideline [25]:

ir(d) = a(d +80)™" (7.2)

where i (d) is the rainfall intensity for duration d and return period T. The

parameters ¢, dand v are estimated from the rainfall statistics for durations 1h-
24h.

The CDS was originally proposed by Keifer and Chu (1957) [26]. Here the
discrete version of the CDS as used in the Danish design rainfall guideline [25]
was applied. The CDS is determined by defining a storm duration and an
asymmetry coefficient that determines the shape of the storm. Two different
shapes of the CDS were applied, respectively, a symmetric storm
(corresponding to an asymmetry coefficient of 0.5) and a storm with an
asymmetry coefficient that describes the most extreme rainfall events on
record.
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7.1.3 Results

The choice of extreme value distribution should balance model bias and
sampling uncertainty of the estimated quantiles. Distributions with more
parameters will, in general, decrease model error but at the expense of an
increase in sampling uncertainty. Studies have shown that the 1-parameter
exponential distribution is preferable for moderately long-tailed distributions
where the slightly better fit of the 2-parameter generalised Pareto distribution
cannot be justified due to its larger sampling uncertainty, cf. [27].

[Years] EVA, 1h rainfall
. /_,." 50
100.0 et
20.0 40 2
2 =
& 1007 s
E 30 3§
&, 5.0 E
2.0
20 Lt S N SO S S .
1.0 : 1.0
—EXP1/LMOM
S N SRR SO - EXPU/LMOM Confidence limit +
057 _ = EXP1/LMOM Canfidence limi -
4.0 50 6.0 7.0 8.0 9.0 10.0
Rainfall 1h [millimeter]
[Years] EVA, 6h rainfall
: : : 5 5 e -7 leo
100.0 - :
50.0
20,0 o
3
o
‘; 10.0 %
R ]
e 3
o
2.0
1.0 e :
[ H H H = EXP1/LMOM i
¢ = : : : | = EXP1/LMOM Confidence limit +
0.5 i : : : : ; : i = EXP1/LMOM Confidence fimif -
12 14 16 18 20 22 24 26 28 30 32 34 36 38
Rainfall 6h [millimeter]
[Years] EVA, 24h rainfall
| i 5 i <l PR 1
100.0 ] b f
50.0 5.0
200 SRRSO ST SO SRS SRR ofl SORP: ot ST st NN OURUS RO - 4‘0 2
& 100 =
30 8
S gl e T e g
£ 2
20
20
1.0 1.0
= EXP1/LMOM
H H H : | = EXP1/LMOM Confidence limit +
057 ; : : = EXP1/LMOM Confidence limit -
20 25 30 35 40 45 50 55 60 65 70
Rainfall 24h [millimeter]
Figure 7.1  Estimated extreme value distribution (full red line) and
corresponding 95% confidence interval (dotted red line)
compared to ERAS rainfall depths (black dots) for 1h, 6h and
24h durations
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Analysis of the partial duration series of rainfall depths shows that for all 6
durations the exponential distribution is preferable compared to the generalised
Pareto distribution considering the balance between model error and sampling
uncertainty. In Figure 7.1 the estimated distributions are compared to the ERA5
extreme rainfall depths for the 1h, 6h and 24h durations. Estimated rainfall
depths and associated sampling uncertainties in terms of standard deviation
are shown in Table 7.2 for different return periods.

Table 7.2 Estimated rainfall depths and standard deviations for different

durations and return periods

Duration = 1h Duration = 2h Duration = 3h

Return period

[years]
1 4.41 0.09 7.81 0.15 10.59 0.21
S 5.91 0.22 10.45 0.38 14.15 0.51
10 6.56 0.27 11.59 0.48 15.68 0.64
50 8.06 0.40 14.23 0.70 19.25 0.95
80 8.50 0.44 15.00 0.77 20.29 1.04
100 8.71 0.46 15.37 0.80 20.78 1.08

Return period

Duration = 6h

Duration = 12h

Duration = 24h

[years]
1 16.03 0.34 21.62 0.51 27.09 0.66
S 21.86 0.84 30.34 1.25 38.36 1.62
10 24.38 1.05 34.10 1.58 43.21 2.04
50 30.21 1.55 42.82 2.32 54.48 3.00
80 31.92 1.70 45.36 2.54 57.77 3.28
100 32.73 1.77 46.57 2.64 59.33 3.41

The IDF model Eq. (7.2) provides a good fit to the area-corrected rainfall
intensities for the six return periods considered. In Figure 7.2 the ERA5 and
area corrected estimates are shown together with the estimated IDF curve for
return periods of 5 and 100 years. It should be noted that it is not possible to
validate the extrapolation of the IDF curve to 10 min rainfall intensities.
However, the applied IDF model has been shown to provide a good fit to
extreme rainfall intensities in Denmark in the range 1 min — 48 hours duration
[25]. Estimated parameters of the IDF curve are shown in Table 7.3. Estimated
10 min rainfall intensities for different return periods are shown in Table 7.4.
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Figure 7.2 ERAS5 and area corrected estimates of rainfall intensities for 1h,

2h, 3h, 6h, 12h and 24h durations and estimated IDF curve for
return periods of 5 and 100 years
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Table 7.3 Estimated IDF parameters for 5 and 100-year return periods

IDF parameter T=5 years T=100 years
a [mm/h] 313 362
6 [min] 91.0 82.2
v [-] 0.701 0.661

Table 7.4 Estimated 10 min rainfall intensities for different return periods

Return period [years] Intensity [mm/h]
1 9.20
S 12.3
10 13.7
50 16.7
80 17.8
100 18.2

The most extreme rainfall events on record were analysed to determine an
asymmetry coefficient for the CDS that best describes the extreme rainfalls at
the location. In Figure 7.3 are shown the 3 most extreme rainfall events from
the ERAS record normalised with respect to the maximum intensity and
duration of the events. The most extreme events have shapes where the peak
intensity occurs in the last 20-40% part of the event. The average asymmetry
coefficient of the three events is 0.73.

For comparison, the most extreme observed event from EINS-North and EINS-
South during the 6-month measurement campaign (see Part A) were analysed.
The most extreme event occurred on 01-12-2021 with return periods of
intensities ranging between 1 and 3 years at EINS-North and 0.33-2 years at
EINS-South for durations between 1 and 12 hours. No other events above the
0.33 return period threshold were observed in the 6-month period.

The two observed events normalised with respect to the maximum intensity
and duration of the events are shown in Figure 7.4. Note that the time series
have a temporal resolution of 10 min as compared to the 1-hour resolution of
ERAS. The event at EINS-North shows the same intensity characteristics as
the ERAS events and has an asymmetry coefficient of 0.75. The event at EINS-
South does not have a well-defined single peak.

Based on the above results it is concluded that an asymmetry coefficient of
0.75 best represents the extreme rainfalls.
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Figure 7.3  Selected extreme ERAD rainfall events normalised with respect
to maximum intensity and duration. The black line is the
average asymmetry coefficient.
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Figure 7.4  Most extreme events at EINS-North and EINS-South normalised
with respect to maximum intensity and duration.
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7.2 Air temperature, humidity, and solar radiation

Annual and monthly statistics of modelled air temperature at 2 m above sea
level (asl), relative humidity and downward solar radiation, based on CFSR, cf.
Section 7.2 of Part A, [1], at analysis point EINS-1 (shallowest) are illustrated in
Figure 7.5. The results are summarised in Table 7.5 to Table 7.7.

There is a clear seasonal variation for all three variables. Air temperature,
relative humidity and solar radiation are larger during the summer months and
lower during the winter months. There is also a clear delay of around ~1 month
between highest solar radiation and, air temperature and relative humidity.
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Figure 7.5  Monthly statistics of air temperature at 2 m asl (top), relative
humidity (centre), and downward solar radiation (bottom) at
EINS-1 (shallowest)
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Table 7.5 Annual and monthly statistics for air temperature at 2 m asl at
EINS-1 (shallowest) based on CFSR (1979-01-01 — 2022-10-01)

Air temperature at 2 m asl at EINS-1 (shallowest) [°C]

Statistical ngzfir?tita Mean Min. Max. STD.
Annual 383,496 9.7 -8.8 23.4 4.7
Jan. 32,735 51 -8.8 11.7 2.8

Feb. 29,832 4.2 -7.5 9.9 2.7

Mar. 32,736 4.8 -4.0 10.5 21

Apr. 31,680 6.6 -0.2 14.7 1.8

May 32,736 9.6 3.3 18.4 2.0

g Jun. 31,680 12.7 7.3 20.5 1.9
é Jul. 32,736 15.2 10.0 23.3 1.8
Aug. 32,736 16.2 10.8 234 1.8

Sep. 31,680 14.6 8.9 21.0 1.7

Oct. 31,993 11.9 4.6 17.1 2.0

Nov. 30,960 8.9 -1.2 16.0 24

Dec. 31,992 6.7 -3.3 134 2.6

Table 7.6 Annual and monthly statistics for relative humidity at EINS-1
(shallowest) based on CFSR (1979-01-01 — 2022-10-01)

Relative humidity at EINS-1 (shallowest) [%]

Statistical nggfirﬂita
Annual 383,496 81.0 36.8 100.0 8.3
Jan. 32,735 80.3 42.3 98.9 8.6
Feb. 29,832 80.8 41.4 97.5 8.7
Mar. 32,736 81.1 39.3 98.2 9.3
Apr. 31,680 81.6 43.4 100.0 9.5
May 32,736 82.3 51.2 99.5 8.5
E Jun. 31,680 83.1 56.7 99.5 7.1
é Jul. 32,736 83.4 59.8 99.2 6.5
Aug. 32,736 81.7 58.4 99.6 6.7
Sep. 31,680 80.2 49.5 98.5 7.2
Oct. 31,993 79.1 40.2 97.0 8.1
Nov. 30,960 79.0 36.8 96.7 8.5
Dec. 31,992 79.2 37.6 96.9 9.0
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Table 7.7 Annual and monthly statistics for downward solar radiation at
EINS-1 (shallowest) based on CFSR (1979-01-01 — 2022-10-01)

Downward solar radiation at EINS-1 (shallowest) [W/m?]

Statistical ng?;;ri:ta
Annual 383,496 130.6 0.0 874.1 203.8
Jan. 32,735 21.1 0.0 257.7 38.6
Feb. 29,832 50.0 0.0 435.6 82.1
Mar. 32,736 106.1 0.0 642.4 150.1
Apr. 31,680 186.7 0.0 776.3 224.8
May 32,736 250.1 0.0 858.6 267.9
g Jun. 31,680 266.1 0.0 874.1 274.5
é Jul. 32,736 250.8 0.0 864.5 265.2
Aug. 32,736 200.1 0.0 797.0 232.1
Sep. 31,680 125.0 0.0 658.8 165.4
Oct. 31,993 61.1 0.0 483.4 93.0
Nov. 30,960 24.7 0.0 287.4 43.2
Dec. 31,992 13.9 0.0 156.4 24.9

7.3 Lightning

Lightning data was obtained from the LIS/OTD Gridded Climatology dataset
[28] from NASA'’s Global Hydrology Resource Center (GHRC), cf. Section 7.4
of Part A, [1]. Table 7.8 summarises the statistics of the HRFC (High
Resolution Full Climatology), HRMC (High Resolution Monthly Climatology)
and LRMTS (Low Resolution Monthly Time Series) datasets for the whole
EINS OWEF. Figure 7.6 and Figure 7.7 show the monthly and yearly variation of
flash rates, based on the HRMC and LRMTS datasets, respectively. It should
be noted that both HRMC and LRMTS contain extensive smoothing (see [29]
for further results).It should be noted that both HRMC and LRMTS contain
extensive smoothing (see [29] for further results). Therefore, the values are
different from the HRFC dataset (discussed in the paragraph above). The
results from HRMC and LRMTS presented here are only shown to demonstrate
the monthly and yearly variations, therefore, it is recommended to use the
HRFC data set. Based on the HRFC data set the mean flash rate at the EINS
OWF is 0.285 fl/(km? yr), i.e. 7.81e* fl/((km? day). As it can be seen from the
figures, the flash rate in June and September is, on average, higher than in
other months.
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Statistics of flash rates at EINS

HRFC dataset: Mean annual flash rate. HRMC: Mean flash rate in
middle of each month, with monthly smoothing. LRMTS: Monthly
time series of flash rate, with smoothing.

Data set Grid [°]
HRFC fl/(km?2-year) 0.5 0.285
HRMC fl/(km2-day) 0.5 0.004 0.0 0.001
LRMTS fl/(km2-day) 2.5 0.005 0.0 0.002
g x10° EINS OWF - HRMC dataset
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Figure 7.6 Monthly variation of flash rate at EINS area based on HRMC
data for the period July 1995 to February 2000
Mean flash rate in middle of each month, with monthly smoothing
x10°____ EINS OWF-LRMTS dataset
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Figure 7.7
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7.4 Visibility

The visibility was derived from the air temperature at 2m height above sea
surface, Tom, and the relative humidity, RH, from CFSR, cf. Section 7.4 of Part
A, [1], following the method described in [30], see (7.3). The dew point
temperature, Tqp, was approximated using the Magnus formulae®. The visibility
was capped at 50 km.

—T
Visibility [km] = 1.609x6000x Wndp (7.3)

Figure 7.8 shows time series of Tom, RH and Visibility, and Figure 7.9 presents
the probability of visibility at EINS-2. The visibility is most frequently between 4
and 20 km, with a 50%-tile of 12.8 km.
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Figure 7.8  Time series of T2m, RH and Visibility at EINS-2

3 https://en.wikipedia.org/wiki/Dew _point
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Figure 7.9  Probability of visibility at EINS-2
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8 Other Oceanographic Conditions

This section presents analyses of other oceanographic conditions.

Other oceanographic conditions concern water temperature, salinity, and
density, and marine growth.

8.1 Water temperature, salinity, and density

Information on the properties of seawater (temperature and salinity) was
obtained from the HDukns3p model described in Section 5.4 of Part A, [1]. Time
series of seawater temperature and seawater salinity were extracted for the
surface and near-seabed layer at four (4) locations: EINS-1 (shallowest), EINS-
3 (max CSiot), EINS-Island (Mini 2), and EINS-5 (South). The data cover a 10-
year period (2013 to 2022) with a temporal resolution of 1-hour. Results of the
analysis are presented only at the EINS-South location, where model outputs
were validated. Results at the other stations are not produced since the
variation in water temperature, salinity, and density across the site is limited.

Seawater temperature

Figure 8.1 presents the monthly statistics (mean, minimum, maximum, and
standard deviation) of seawater temperature near the surface and near the
seabed temperature at EINS-South. The statistics are summarised in for Table
8.1.

The seasonal variation in seawater temperature is clear at the surface with
largest temperatures occurring in summer and early autumn (June to
September) and the lowest temperatures during the winter and early spring
(January to March). The monthly mean seawater temperatures at the surface
are higher than those at the seabed for the entire year. The seasonal variation
at the seabed is also clear but less pronounced. The highest temperatures
occur during autumn and the lowest in spring, showing the delay in
temperature changes over the depth.
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EINS-South (6.455200°E; 56.344200°N; d=40.0mMSL)
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Figure 8.1  Monthly statistics of surface (top panel) and bottom (bottom panel) seawater

temperature at EINS-South
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Table 8.1 Annual and monthly statistics for seawater temperature near
the surface and near the seabed at EINS-South based on
HDukns3p (2013-01-01 to 2023-01-01)
Near-surface and near-seabed data is extracted from top and bottom
layers of HDukns3p

Statistical

Annual 87,649 12.0 2.6 21.9 4.3
Jan. 7,441 8.9 6.2 11.2 1.0

Feb. 6,768 7.0 4.5 9.2 1.0

Mar. 7,440 6.2 2.6 8.0 1.1

Apr. 7,200 6.9 3.9 9.8 1.1

May 7,440 9.3 4.6 15.3 1.7

E Jun. 7,200 135 8.7 18.7 2.0
é Jul. 7,440 16.4 12.8 21.8 1.7
Aug. 7,440 18.0 15.0 21.9 1.3

Sep. 7,200 16.9 14.1 19.6 1.1

Oct. 7,440 15.4 12.6 17.7 1.1

Nov. 7,200 13.9 10.5 16.1 1.0

Dec. 7,440 11.6 9.4 14.0 0.9

Seawater temperature at EINS-South [°C] - Near-seabed

Statistical ngzfir:jtzta Mean Min. Max. STD.
Annual 87,649 10.3 2.7 17.7 3.4
Jan. 7,441 8.9 6.2 11.3 1.0

Feb. 6,768 7.1 4.6 9.2 1.0

Mar. 7,440 6.2 2.7 8.0 1.1

Apr. 7,200 6.6 4.0 7.9 0.9

May 7,440 7.4 4.6 9.4 1.0

f Jun. 7,200 8.4 6.0 10.8 1.1
é Jul. 7,440 10.2 6.5 13.1 1.5
Aug. 7,440 12.6 7.6 16.1 1.9

Sep. 7,200 15.0 11.0 17.7 1.9

Oct. 7,440 15.3 11.7 17.7 1.2

Nov. 7,200 14.0 10.6 16.1 1.0

Dec. 7,440 11.7 9.4 14.1 0.9
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Figure 8.2 presents the monthly statistics (mean, minimum, maximum, and
standard deviation) of seawater salinity near the surface and near the seabed
salinity at EINS-South. The statistics are summarised in Table 8.2.

Seawater salinity

The seasonal variation in seawater salinity is clear at the surface. The highest
and mean salinity values are almost constant during the whole year, while the
lowest salinity values vary considerably during the spring and summer months.
During the first month of spring, minimum salinity values at the surface drop to
a minimum in May, where then minimum salinity values increase slowly until
November. There is little seasonal variation near the seabed.
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Figure 8.2  Monthly statistics of surface (top panel) and bottom (bottom panel) seawater salinity at
EINS-South
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Table 8.2 Annual and monthly statistics for seawater salinity near the
surface and near the seabed at EINS-South based on HDuknsap
(2013-01-01 to 2023-01-01)
Near-surface and near-seabed data is extracted from top and bottom
layers of HDukns3p

Seawater salinity at EINS-South [PSS - Near-surface
Statistical

Annual 87,649 34.4 30.5 35.1 0.4
Jan. 7,441 34.6 34.1 351 0.2
Feb. 6,768 34.5 34.1 34.9 0.1
Mar. 7,440 34.6 34.1 351 0.2
Apr. 7,200 34.6 334 35.0 0.3
May 7,440 34.3 30.5 34.9 0.8
g Jun. 7,200 34.3 317 34.8 0.5
é Jul. 7,440 341 31.3 34.9 0.7
Aug. 7,440 345 325 34.9 0.3
Sep. 7,200 34.4 324 34.9 0.5
Oct. 7,440 34.5 33.6 34.9 0.2
Nov. 7,200 34.5 34.1 35.0 0.2
Dec. 7,440 345 34.0 35.0 0.2

Statistical nggfirﬂita
Annual 87,649 34.5 33.8 35.1 0.2
Jan. 7,441 34.6 34.1 35.1 0.2
Feb. 6,768 345 34.1 34.9 0.1
Mar. 7,440 34.6 34.2 35.1 0.2
Apr. 7,200 34.7 34.3 35.0 0.2
May 7,440 34.6 34.2 35.0 0.2
g Jun. 7,200 345 34.0 34.9 0.2
é Jul. 7,440 34.4 34.0 34.8 0.2
Aug. 7,440 34.3 33.8 34.8 0.2
Sep. 7,200 344 33.8 34.9 0.2
Oct. 7,440 34.5 34.0 35.0 0.2
Nov. 7,200 345 34.1 35.0 0.2
Dec. 7,440 34.5 34.0 35.0 0.2
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The density of seawater was calculated from the seawater temperature and
salinity from the HDuknszp model using the international one-atmosphere
equation of the state of seawater derived by Millero, F.J. & Poisson, A. [31].

[31].

Figure 8.3 presents the monthly statistics (mean, minimum, maximum, and
standard deviation) of near sea surface and near-seabed water density at the
EINS-South location. The statistics are summarised in Table 8.3.

Seawater density

The seasonal variation in seawater density is clear at the surface with the
largest density occurring in winter (December to March) and the lowest density
seen during spring and summer (April to September). There is little seasonal
variation in seawater density at the seafloor, but the lowest density levels occur
during September to November, showing the delay in density changes over the
depth, i.e., the variations follow roughly the combined pattern of temperature
and salinity.
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Figure 8.3  Monthly statistics of surface (top panel) and bottom (bottom panel) seawater density at
EINS-South
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Table 8.3 Annual and monthly statistics for seawater density at EINS-
South based on HDuyknssp (2013-01-01 to 2023-01-01)
Near-surface and near-seabed data is extracted from top and bottom
layers of HDuknss3p.

Seawater density at EINS-South [kg/m?] - Near-surface

Statistical NQ.Of teiE
points

Annual 87,649 1025.5 1022.2 1027.0 0.9
Jan. 7,441 1026.2 1025.7 1026.7 0.2

Feb. 6,768 1026.5 1025.9 1027.0 0.2

Mar. 7,440 1026.6 1026.2 1027.0 0.2

Apr. 7,200 1026.5 1025.3 1026.9 0.3

May 7,440 1025.9 1022.8 1026.8 0.7

g Jun. 7,200 1025.2 1022.6 1026.2 0.6
é Jul. 7,440 1024.4 1022.2 1025.6 0.8
Aug. 7,440 1024.3 1022.8 1025.1 0.5

Sep. 7,200 1024.5 1022.9 1025.4 0.5

Oct. 7,440 1025.0 1024.1 1025.9 0.3

Nov. 7,200 1025.3 1024.6 1026.3 0.3

Dec. 7,440 1025.7 1025.1 1026.4 0.3

Seawater density at EINS-South [kg/m?] - Near-seabed

Statistical Ng_of data Mean Min. Max. STD.
points

Annual 87,649 1026.0 1024.3 1027.0 0.6
Jan. 7,441 1026.2 1025.7 1026.8 0.2

Feb. 6,768 1026.5 1025.9 1026.9 0.2

Mar. 7,440 1026.7 1026.2 1027.0 0.2

Apr. 7,200 1026.7 1026.3 1027.0 0.1

May 7,440 1026.5 1026.1 1026.9 0.2

g Jun. 7,200 1026.4 1025.8 1026.8 0.2
é Jul. 7,440 1026.1 1025.5 1026.7 0.3
Aug. 7,440 1025.7 1024.9 1026.5 0.4

Sep. 7,200 1025.2 1024.4 1026.4 0.5

Oct. 7,440 1025.0 1024.3 1025.8 0.3

Nov. 7,200 1025.3 1024.6 1026.2 0.3

Dec. 7,440 1025.7 1025.1 1026.4 0.3
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9 Marine growth

Marine growth is defined as the unwanted settlement and growth of marine
organisms on submerged surfaces of ship hulls, buoys, piers, offshore
platforms, etc. It may also be referred to as “marine fouling” or “biofouling”. The
composition and extent of marine growth vary with the biogeographical region
being higher at tropical regions than at other latitudes.

The assessment of marine growth is based on scientific publications (see [32],
[33], [34], [35]). From those publications there are not available marine growth
time series, only values of observed marine growth weight at different water
depths.

Numerous factors influence the amount and type of marine growth, including
salinity, temperature, depth, current speed, and wave exposure, in addition to
biological factors such as food availability, larval supply, presence of predators,
and the general biology and physiology of the fouling species. Extensive
knowledge on factors that affect the level of marine growth in the North Sea
has been obtained through years of operation and maintenance of gas and oll
platforms. Once a new hard substrate has been introduced into the
environment, the organisms colonise quickly, and can grow within days.
Typically, a succession in species composition will take place as the age of the
deployed substrate increases. The succession is a result of organisms
competing for space, and a quasi-steady state in fouling communities will be
established within less than 4 to 6 years. Along with succession, individual
organisms grow larger which creates an increasing thickness of marine growth.
Predators such as starfish become an integral part of the fouling ecosystem
finding empty spaces in the marine growth cover. In the southern North Sea

(< 56° N), some studies have shown that marine growth on offshore
installations (6900 records from 39 locations duing 1996-2017) may vary
between 0 and 350 mm with an average of 52.76 mm (+ 36.54 mm standard
deviation) [32]. Of those installations located in regions with high
concentrations of chlorophyll (0.84 mg/m?) showed thicker layers of marine
growth. DNV [16] states that values, up to 150 mm between sea level and LAT
—10 m, may be seen in the Southern North Sea.

Studies carried out in two existing offshore wind farms, Egmond aan Zee (52.6°
N, 4.41° E) and Princess Amalia (52.58° N, 4.02° E), located at a depth range
of 17 — 22 m within the Dutch EEZ have demonstrated that marine growth
below the splash zone (1 m) is dominated by mussels, starfish (predating on
mussels), various crustaceans (sessile and mobile), sea anemones and
polychaetes (tube-building and mobile) [33], [34], [35]. Thickness of marine
growth was measured/estimated on two monopiles in the Egmond aan Zee
wind farm 1.7 years after monopile erection and probably too early to reflect a
mature fouling community. Below the splash zone, marine growth ranged
between 5 and 15 cm in the upper 6-7 m of a monopile. Below 6-7 m, the
thickness of marine growth decreased to between 1 and 5 cm but with 100%
cover. The marine growth will add to the weight of substructures (monopiles)
ranging between 1 and 6.5 kg/m? depending on depth. Weight data from the
two existing wind farms (Egmond aan Zee and Princess Amalia) differs with
respect to depth-distribution as Egmond aan Zee showed increasing weight
under water from 2 kg/m?at 2 m to 6.5 kg/m?at 10 m and decreasing to 1.5
kg/m?at 15 m. In contrast, marine growth in Princess Amalia wind farm,
monitored after 4 and 6 years of installation, peaked at 2 m with weight under
water at 4.3 kg/m? gradually decreasing to 1 kg/m?at 10 m, to increase again to
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1.5 kg/m?at 17 m. Slightly smaller values are expected at higher latitudes of
the North Sea.

In [36], density data were acquired from A12-CCP and the Q1 Haven platforms
operated by Petrogas E&P Netherlands B.V. to model density across 39
platforms located in the southern North Sea. Weight varied from 2 to 113 kg/m?
(average 47 kg/m?), thickness from 5 to 120 mm (average 35 mm) with
densities between 311 and 945 kg/m2. The model predicted a reduction in
weight with depth and a generalised density of 612 kg/m3.

At Central and Northern North Sea (56°N to 59°N), DNV [16] suggest applying
a thickness of marine growth of 10 cm (from sea surface to 40 m depth) to
account for the added weight on the structural component. The density of the
marine growth may be set equal to 1325 kg/m? (resulting in thickness of 1-

5 mm considering a weight of 1-6.5 kg/m?) unless more accurate data are
available. We suggest following DNVs recommendation, which also will be in
line with the observed/calculated depth distribution of ash free and wet weight
of biomass.

110



10

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

>

References

DHI, "Energy Island North Sea, Metocean Site Conditions
Assessment, Part A: Data Basis — Measurements &
Models, 2023-06-09 ", 2023.

NORSOK, "Actions and action effects, N-003, Edition 3,
April 2016," 2016.

Environmental Conditions and Environmental Loads,
DNV-RP-C205, DNV, 2021. [Online]. Available:

Energinet, "Scope of Services — North Sea Energy Island
Metocean Conditions Assessment, document number:
2/05192-6, 2022-06-22," 2022.

Energinet, "Scope of Services — Site Metocean
Conditions Assessment for Offshore Wind Farms, North
Sea, Document number: 22/08564-1, 2022-11-08," 2022.

Wind energy generation systems — Part 3-1: Design
Requirements for fixed offshore wind turbines. Ed. 1.0,
IEC-61400-3-1, 2019.

DHI, "Energy Island North Sea, Metocean Site Conditions
Assessment, Part B: Data Analyses — Energy Island,
2023-06-16," 2023.

DHI, "Energy Island, North Sea, Metocean Site
Conditions Assessment, Part C: Data Analyses — Wind
Farm Area (FEED), due Apr. 2023," 2023.

DHI, "Energy Island North Sea, Metocean Site Conditions
Assessment, Part D: Data Basis — Hindcast revalidation
note, due Jan. 2024," 2024.

D. L. Codiga, "Unified Tidal Analysis and Prediction Using
the UTide Matlab Functions. Technical Report 2011-01,"
Graduate School of Oceanography, University of Rhode
Island, Narragansett, RI. 59pp, 2011.

B. B. a. S. L. R. Pawlowicz, "Classical tidal harmonic
analysis including error estimates in MATLAB using T-
TIDE, Computers & Geosciences 28, pp. 929-937," 2002.

K. E. L. a. D. A. Jay, "Enhancing tidal harmonic analysis:
Robust (hybrid L-1/L-2) solutions, Cont. Shelf Res. 29,
pp. 78-88. DOI: 10.1016/j.csr.2008.1004.1011," 20009.

111


http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

<

J.Y.C.a. V. A B. M. G. G. Foreman, "Versatile
Harmonic Tidal Analysis: Improvements and
Applications,” J. Atmos. Oceanic Tech. 26, pp. 806-817.
DOI: 810.1175/2008JTECHO1615.1171, 2009.

D. Shepard, "A two-dimensional interpolation function for
irregularly-spaced data," in ACM National Conference,
1968: Association for Computing Machinery, in ACM '68,
pp. 517-524.

DHI, "MIKE 21 Spectral Waves FM: User Guide," 2022.

Loads and site conditions for wind turbines, DNV-ST-
0437, DNV, 2021.

J. D. Fenton, "The numerical solution of steady water
wave problems," Computers & Geosciences, vol. vol. 14,
pp. pp. 357-368, 1988.

J. D. Fenton, "Nonlinear Wave Theories," Ocean
Engineering Science, vol. Vol.9, 1990.

B. T. S. Paulsen, Ben de; van der Meulen, Michiel;
Jacobsen, Niels Gjgl, "Probability of wave slamming and
the magnitude of slamming loads on offshore wind
turbine foundations," Coastal Engineering, pp. 76-95,
20109.

H. Madsen, P. S. Mikkelsen, D. Rosbjerg, and P.
Harremoés, "Regional estimation of rainfall intensity-
duration-frequency curves using generalized least
squares regression of partial duration series statistics,"
Water Resources Research, vol. 38, no. 11, pp. 21-1-21-
11, 2002, doi:

H. Madsen, I. Gregersen, D. Rosbjerg, and K. Arnbjerg-
Nielsen, "Regional frequency analysis of short duration

rainfall extremes using gridded daily rainfall data as co-
variate.," presented at the Water Sci Technol., 2017.

D. Rosbjerg and H. Madsen, "Initial design of urban
drainage systems for extreme rainfall events using
intensity—duration—area (IDA) curves and Chicago design
storms (CDS)," Hydrological Sciences Journal, vol. 64,
no. 12, pp. 1397-1403, 2019/09/10 2019, doi:
10.1080/02626667.2019.1645958.

S. Thorndahl, J. E. Nielsen, and M. R. Rasmussen,
"Estimation of Storm-Centred Areal Reduction Factors
from Radar Rainfall for Design in Urban Hydrology,"
Water, vol. 11, no. 6, p. 1120, 2019. [Online]. Available:

112


https://doi.org/10.1029/2001WR001125
https://www.mdpi.com/2073-4441/11/6/1120

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

<

NERC, "Flood Studies Report," National Environment
Research Council, UK, 1975, vol. II.

K. Arnbjerg-Nielsen, H. Madsen, and P. S. Mikkelsen,
"Regional variation af ekstremregn i Danmark- ny
bearbejdning (1979-2005)," Ingenigrforeningen i
Danmark - IDA, 2006.

C. J. Keifer and H. H. Chu, "Synthetic Storm Pattern for
Drainage Design," Journal of the Hydraulics Division, vol.
83, no. 4, pp. 1332-1-1332-25, 1957, doi:
doi:10.1061/JYCEAJ.0000104.

D. Rosbjerg, Madsen, H., Rasmussen, P.F., "Prediction
in partial duration series with generalized Pareto-
distributed exceedances,," Water Resources Research,,
vol. 28(11), 3001-3010., 1992.

D. J. Cecil. LIS/OTD Gridded Lightning Climatology Data
Collection, Version 2.3.2015, NASA EOSDIS Global

Hydrology Resource Center Distributed Active

Archive Center, Huntsville, Alabama, U.S.A., doi:

D. J. B. Cecil, D. E.; Blackeslee, R. J., "Gridded lightning
climatology from TRMM-LIS and OTD: Dataset
description," Atmospheric Research, vol. 135-136, pp.
404-414, 2014.

P. R. J. Doran, D. J. Beberwyk, G. R. Brooks, G. A.
Gayno, R. T. Williams, J. M. Lewis and R. J. Lefevre,
"The MMS5 at the AF Weather Agency — new products to
support military operations," in 8th Conference on
Aviation, Range, and Aerospace Meteorology, American,
Dallax, TX, USA., 1999.

F. J. Millero and A. Poisson, "International one-
atmosphere equation of state of seawater," Deep Sea
Research Part A. Oceanographic Research Papers, vol.
28, no. 6, pp. 625-629, 1981/06/01/ 1981, doi:

L. P. Almeida and J. W. P. Coolen, "Modelling thickness
variations of macrofouling communities on offshore
platforms in the Dutch North Sea," Journal of Sea
Research, vol. 156, p. 101836, 2020/01/01/ 2020, doi:

M. C. Bruijs, "Biological Fouling - Survey of marine
fouling on turbine support structures of the Offshore
Windfarm Egmond aan Zee.," in "KEMA Nederland B.V.,"
50863511-TOS/PCW 10-4207, 2010.

113


http://dx.doi.org/10.5067/LIS/LIS-OTD/DATA311
https://doi.org/10.1016/0198-0149(81)90122-9
https://doi.org/10.1016/j.seares.2019.101836

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

<

W. L. Bouma, S., "Benthic communities on hard
substrates of the offshore wind farm Egmond aan Zee
(OWEZ2) - Including results of samples collected in scour
holes," in "Bureau Waardenburg bv,"

OWEZ_R_266_T1 20120206_hard_substrate, 2012.

T. V. d. M. Vanagt, L. and Faasse, M. , "Development of
hard substrate fauna in the Princess Amalia Wind Farm.
Monitoring 3.5 years after construction.,” 2013.

J. W. P. A. Coolen, L. P.; Olie, R., "Modelling marine
growth biomass on North Sea offshore structures,”
presented at the Structures in the Marine Environment
(SIME2019), Glasgow, UK, 2019.

J. E. Heffernan and J. A. Tawn, "A conditional approach
for multivariate extreme values," Journal of the Royal
Statistical Society. Series B, vol. 66, no. 3, pp. 497-546,
2004.

H. F. Hansen, D. Randell, A. R. Zeeberg, and P.
Jonathan, "Directional-seasonal extreme value analysis
of North Sea storm conditions," Ocean Engineering, vol.
195, 2020, doi: 10.1016/j.oceaneng.2019.106665.

P. S. Tromans and L. Vanderschuren, "Response Based
Design Conditions in the North Sea: Application of a New
Method," presented at the Offshore Technology
Conference, Houston, Texas, 1995. [Online]. Available:
dx.doi.org/10.4043/7683-MS.

G. Z. Forristall, "On the Use of Directional Wave Criteria,"
Journal of Waterway, Port, Coastal, and Ocean
Engineering, vol. 130, no. 5, pp. 272-275, 2004, doi:
10.1061/(asce)0733-950x(2004)130:5(272).

Environmental Conditions and Environmental Loads,
DNV-RP-C205, DNV, 2014. [Online]. Available:

G. Z. Forristall, "Wave Crest Distributions: Observations
and Second-Order Theory," Journal of Physical
Oceanography, vol. 30, no. 8, pp. 1931-1943, 2000, doi:
dx.doi.org/10.1175/1520-
0485(2000)030<1931:wcdoas>2.0.co;2.

A. J. Battjes and W. H. Groenendijk, "Wave height
distributions on shallow foreshore," Coastal Enginnering,
vol. 40, no. 3, pp. 161-182, 2000.

114


http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf
http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/RP-C205.pdf

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

<

P. S. Tromans and L. Vanderschuren, "Response Based
Design Conditions in the North Sea: Application of a New
Method," OTC-7683, pp. 387-397, 1995.

P. S. Tromans, A. R. Anaturk, and P. Hagemeijer, "A new
model for the kinematics of large ocean waves-
Application as a design wave.," International Society of
Offshore and Polar Engineers, 1991.

P. Thompson, Y. Cai, R. Moyeeda, D. Reeve, and J.
Stander, "Bayesian nonparametric quantile regression
using splines," Computational Statistics and Data
Analysis, vol. 54, pp. 1138-1150, 2010.

P. Jonathan, D. Randell, Y. Wu, and K. Ewans, "Return
level estimation from non-stationary spatial data exhibing
multidimensional covaiate effects,” Ocean Engineering,
no. 88, pp. 520-532, 2014.

P. Eilers and B. Marx, "Multivariate calibration with
temperature interaction using two-dimensional penalized
signal regression," Chemometrics and Intelligent
Laboratory Systems, vol. 66, no. 2, pp. 159-174, 2003.

[. D. Currie, M. Durban, and P. H. C. Eilers, "Generalized
linear array models with applications to multidimensional
smoothing," Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 68, no. 2, 2006.

P. H. C. Eilers, I. D. Currie, and M. Durban, "Fast and
compact smoothing on large multidemsional grids,"
Computational Statistics & Data Analysis, vol. 50, no. 1,
pp. 61-76, January 2006.

P. J. Green and B. W. Silverman, "Nonparametric
Regression and Generalized Linear Models," Chapman &
Hall, 1994.

S. Lang and A. Brezger, "A Bayesian P-Splines," Journal
of Computational and Graphical Statistics, no. 13, pp.
183-212, 2004.

G. O. Roberts and J. S. Rosenthal, "Examples of
Adaptive MCMC," Journal of Computational and
Graphical Statistics, vol. 18, pp. 349-367, 2009.

H. Rue, "Fast Sampling of Gaussian Markov Random
Fields with Applications,” Journal of the Royal Statistical
Society, vol. Series B, 2001.

115



DHI)

11 Appendix A: List of Data Reports

This appendix presents a list of data reports attached to this report.

Table 11.1  List of data reports (.xIsx) attached to this report.
Metocean (including T-EVA), and extreme conditions (J-EVA).

S ENE

Normal conditions (including T-EVA)

EINS-1_Metocean-Data-Report_2023-06-30.xIsx

EINS-2_Metocean-Data-Report_2023-06-30.xlsx

EINS-3_Metocean-Data-Report_2023-06-30.xIsx

EINS-4_Metocean-Data-Report_2023-06-30.xlsx

EINS-5_Metocean-Data-Report_2023-06-30.xIsx

Extreme conditions (based on J-EVA)

EINS-1_J-EVA_Data_Report_2023-06-30.xlsx

EINS-2_J-EVA_Data_Report_2023-06-30.xIsx

EINS-3_J-EVA_Data_Report_2023-06-30.xIsx

EINS-4_J-EVA_Data_Report_2023-06-30.xIsx

EINS-5_J-EVA_Data_Report_2023-06-30.xlsx
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12 Appendix B: Comparison of J-EVA
and T-EVA

This section presents a comparison between the traditional extreme
value analysis (T-EVA) and the joint extreme value analysis (J-EVA).

Introduction

It is significant to understand the fundamental differences between J-EVA and
T-EVA, and the reason for preferring J-EVA over T-EVA. The differences arise
mainly from the considerations summarised in Table 12.1.

Table 12.1 Differences between T-EVA and J-EVA
T-EVA ‘ J-EVA ‘

Characterises nature less accurately | Characterises nature more
accurately

Less consistent estimates of joint Consistent joint probabilities of

parameters conditioned (associated) parameters

Storms are characterised only by the | Storms are characterised by ALL

conditioning parameter variables (wave, current, water level
and wind)

Fitting of directional extremes

decoupled with monthly extremes Consistent directional and seasonall

Fitting of monthly extremes extreme values

decoupled with directional extremes

Evolution of a storm remains in a Storms can build up in one sector,

particular direction/month peak in another and finally decay in
a third sector

Parameters of distribution remain Parameters of the distribution are

fixed — Frequentist approach allowed to vary — Bayesian approach

Uncertainty of an estimate is larger, Uncertainty is accounted for in the
particularly for larger return periods estimate leading to lower uncertainty
for high return values

Large “subjectivity” in EVA Less “subjectivity” in EVA
distributions distributions

Comparison at EINS-2

Figure 12.1 - Figure 12.3 shows the extreme value distributions of Hmo, Hmax,
and CmaxmsL at EINS-2 using T-EVA (results for all wind, water level, current,
and waves variables of T-EVA are given in the data reports). These plots
depict the final distributions chosen from a sensitivity analysis using multiple
thresholds, distributions (see section on sensitivity below), and fitting methods
to assess the goodness of fit (visually), the magnitude (inter-compared), depth
considerations (waves), and general guidelines and practices for conducting
EVA.
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Figure 12.1 Extreme value distribution of Hmo at EINS-2
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Figure 12.2 Extreme value distribution of Hnax at EINS-2
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Figure 12.3 Extreme value distribution of Cmax, msL at EINS-2

Figure 12.5 - Figure 12.5 and Table 14 shows the differences between the
estimated extreme values using T-EVA and J-EVA for the following
parameters:

o HmO, Hmax, Cmax, SWL, Cmax, MSL, WS. CS, HWLtot, LWLtot, HWLres, LWLres-

Note that the truncation to water depth, see Section 6.2.6, t0 Hmax and Cmax,swi
results in identical values for T-EVA and J-EVA for high return periods.

The numbers show that the estimates using T-EVA are generally slightly larger
although the magnitude of differences depends on the parameter. The largest
difference of 1 m is observed for Hmax and CmaxmsL respectively for 1.000- and
100-year return periods.

The reason for such differences is that T-EVA and J-EVA are fundamentally
different approaches and cannot be directly compared. Cf. Table 12.1, J-EVA
uses a Bayesian approach, multi-variate fitting for directions and seasons,
embedding of statistical uncertainty, etc. In T-EVA, the estimated extremes are
rather sensitive to choices of distribution and fitting, which according to
common practise is based on sensitivity tests, inspection of the quality of fits,
and assessment of how stable the estimated fits/values are.
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Table 12.2  Differences between the estimated extremes of T- and J-EVA

Tr [yr] Hmo Hmax Crmax,swL Crmax,MsL WS CSs HW.L tot LWL ot HW.L res LWL res

1 0.2 0.1 0.2 0.3 -0.3 0.1 -0.1 0.0 0.0 0.0

5 0.1 0.1 0.2 0.3 -0.3 0.0 0.0 -0.1 0.0 0.0

10 0.0 0.1 0.2 0.3 -0.2 0.1 0.0 0.0 0.1 0.0

50 -0.1 0.1 0.2 0.7 0.3 0.1 0.0 -0.1 0.1 -0.1

80 0.0 0.2 0.2 0.9 0.3 0.1 0.0 -0.1 0.1 0.0

100 -0.1 0.3 0.3 1.0 0.2 0.1 0.0 -0.1 0.1 -0.1

1000 0.0 1.0 0.4 0.4 0.4 0.1 0.2 -0.2 0.2 -0.1

10000 0.2 0.0 0.0 -0.1 0.0 0.1 0.3 -0.3 0.3 -0.2
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Figure 12.4 Differences between the estimated extremes of T- and J-EVA
Top to bottom: Hmo, Cmax,swi, WS, HWLiot, and HWLres.
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Sensitivity of T-EVA to distribution, threshold, and fitting

Figure 12.6 - Figure 12.9 presents sensitivity of T-EVA to distribution,
threshold, and fitting for all considered variables (WS, Hmo, WL, and CS). The
plots depict the 100-year value vs. number of events year. These plots were
used to assess the variability of the estimate according to various distributions
and fittings (ML = Maximum Likelihood, LS = Least-squares), and together with
visual inspection of the actual distribution plots this governed the choice of
settings for T-EVA of each variable.
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Figure 12.6 Sensitivity of T-EVA to distribution, threshold, and fitting — WS
(top) and Hmo (bottom)
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13 Appendix C: T-EVA - Traditional EVA

This document describes the DHI extreme value analysis (EVA).

13.1 Summary of approach

Extreme values with conditioned long return periods are estimated by fitting a
probability distribution to historical data. Several distributions, data selection
and fitting techniques are available for estimation of extremes, and the
estimated extremes are often rather sensitive to the choice of method.
However, it is not possible to choose a preferred method only on its superior
theoretical support or widespread acceptance within the industry. Hence, it is
common practice to test several approaches and make the final decision based
on goodness of fit.

The typical extreme value analyses involved the following steps:

1. Extraction of independent identically-distributed events by requiring that
events are separated by at least 36 hours (or similar), and that the value
between events had dropped to below 70% (or similar) of the minor of two
consecutive events. The extraction is conducted individually for omni and
directional/seasonal subsets respectively.

2. Fitting of extreme value distribution to the extracted events, individually for
omni and directional/seasonal subsets. Distribution parameters are
estimated either by maximum likelihood or least-square methods. The
following analysis approaches are used (see Section 13.2 for details):

- Fitting the Gumbel distribution to annual maxima.

- Fitting a distribution to all events above a certain threshold (the Peak-
Over-Threshold method). The distribution type can be exponential,
truncated Weibull or 2-parameter Weibull to excess.

3. Constraining of subseries to ensure consistency with the omni/all-year
distribution; see Section 13.4 for details.

4. Bootstrapping to estimate the uncertainty due to sampling error; see
Section 13.6 for details.

5. Values of other parameters conditioned on extremes of one variable are
estimated using the methodology proposed in [37] (Heffernan & Tawn).

Figure 13.1 shows an example of EVA based on 38 years of hindcast data and
a Gumbel distribution fitted to the annual maxima using max. likelihood.
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Figure 13.1 Example of traditional extreme value analysis of Hmo.
A Gumbel distribution fitted to the annual maxima using maximum
likelihood.

13.2 Long-term distributions

The following probability distributions are often used in connection with
extreme value estimation:
- 2-parameter Weibull distribution
- Truncated Weibull distribution
- Exponential distribution
- Gumbel distribution

The 2-parameter Weibull distribution is given by:
a
PX<x)=1-exp (— (%) ) (13.1)

with distribution parameters a (shape) and B (scale). The 2-parameter Weibull
distribution used in connection with Peak-Over-Threshold (POT) analysis is
fitted to the excess of data above the threshold, i.e., the threshold value is
subtracted from data prior to fitting.

The 2-parameter truncated Weibull distribution is given by:

PX<x)=1- Pioexp (— (%)a) (13.2)

with distribution parameters a (shape) and B (scale) and the exceedance
probability, Po, at the threshold level, y, given by:

neerl-G)

The 2-parameter truncated Weibull distribution is used in connection with
Peak-Over-Threshold analysis, and as opposed to the non-truncated 2-p
Weibull, it is fitted directly to data, i.e., the threshold value is not subtracted
from data prior to fitting.

The exponential distribution is given by:
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with distribution parameters 3 (scale) and p (location). Finally, the Gumbel
distribution is given by:

P(X <x) =exp (—exp (M ; x)) (13.5)

with distribution parameters B (scale) and p (location).

P(X <x)=1—exp <_ (ﬂ)) x> (13.4)

13.3 Individual wave and crest height

Short-term distributions

The short-term distributions of individual wave heights and crests conditional
on Hmo are assumed to follow the distributions proposed by Forristall, (Forristall
G. Z.,1978) and (Forristall G. Z., 2000). The Forristall wave height distribution
is based on Gulf of Mexico measurements, but experience from the North Sea
has shown that these distributions may have a more general applicability. The
Forristall wave and crest height distributions are given by:

aH,

P(X>x|Hm0)=exp[—[ X jﬁ} (13.6)

where the distribution parameters, a and B, are as follows:
Forristall wave height: a=0.681 B=2.126
Forristall crest height (3D): a = 0.3536 + 0.2568-S: + 0.0800-Ur
B=2-1.7912-S; — 0.5302-Ur + 0.284-Ur?

_ 2_7er0 _ H-I?

Sl— 2 Ur—
9 T01 and d’

For this type of distribution, the distribution of the extremes of a given number
of events, N, (waves or crests) converges towards the Gumbel distribution
conditional on the most probable value of the extreme event, Hmp (or Cmp for
crests):

B
P(hmax IHmp)zexp —exp[—lnNHZ“i} —1D (13.7)

13.3.1 Individual waves (modes)

The extreme individual wave and crest heights are derived using the storm
mode approach, (Tromans, P.S. and Vanderschuren, L., 1995). The storm

modes, or most probable values of the maximum wave or crest in the storm
(Hmp or Cmyp), are obtained by integrating the short-term distribution of wave
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heights conditional on Hmo over the entire number of sea states making up the
storm. In practice, this is done by following these steps:

1. Storms are identified by peak extraction from the time series of significant
wave height. Individual storms are taken as portions of the time series with
Hmo above 0.7 times the storm peak, Hmo.

2. The wave (or crest) height distribution is calculated for each sea state
above the threshold in each individual storm. The short-term distribution of
H (or C) conditional on Hmo, P(h|Hmo), is assumed to follow the empirical
distributions by Forristall (see Section 13.3). The wave height probability
distribution is then given by the following product over the n sea states
making up the storm:

Nseastates

max < h)= Hp(hl HmO,j )Nwam'j (138)

j=1

P(H

with the number of waves in each sea state, Nwaves, being estimated by deriving
the mean zero-crossing period of the sea state. The most probable maximum
wave height (or mode), Hmp, of the storm is given by:

P(H <h)=% (13.9)

This produces a database of historical storms each characterised by its most
probable maximum individual wave height which is used for further extreme
value analysis.

13.3.2 Convolution of short-term variability with long-term
storm density

The long-term distribution of individual waves and crests is found by
convolution of the long-term distribution of the modes (subscript mp for most
probable value) with the distribution of the maximum conditional on the mode
given by:

P(Hmax ):J.Oo;)(hmax |Hmp)'p(Hmp )deP

B
* h
= - -InN|| — | -1]||-p\H, dH
Lexp €xp n (Hmp] p( mph mp

(13.10)

The value of N, which goes into this equation, is determined by defining
equivalent storm properties for each individual storm. The equivalent storms
have constant Hyno and a duration such that their probability density function of
Hmax Or Cmax matches that of the actual storm. The density functions of the
maximum wave in the equivalent storms are given by:

N
s “
d H
P(Hmax IHmO,eq’Neq):d_H{l—eXp{—{ﬁJ H (13.11)

mO0,eq

The B parameter in eq. (13.10) comes from the short-term distribution of
individual crests, eq. ((13.6), and is a function of wave height and wave period.
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Based on previous studies, it has been assessed that the maximum crest
heights are not sensitive to 3¢ for a constant value of 1.88 and hence, itis
decided to apply Bc = 1.88. The number of waves in a storm, N, was
conservatively calculated from a linear fit to the modes minus one standard
deviation.

13.4 Subset extremes

Estimates of subset (e.g., directional, and monthly) extremes are required for
several parameters. To establish these extremes, it is common practice to fit
extreme value distributions to data sampled from the population (i.e., the model
database) that fulfils the specific requirement e.g., to direction, i.e., the
extremes from each direction are extracted and distributions fitted to each set
of directional data in turn. By sampling an often relatively small number of
values from the data set, each of these directional distributions is subject to
uncertainty due to sampling error. This will often lead to the directional
distributions being inconsistent with the omnidirectional distribution fitted to the
maxima of the entire (omnidirectional) data set. Consistency between
directional and omnidirectional distributions is ensured by requiring that the
product of the n directional annual non-exceedance probabilities equals the
omnidirectional, i.e.:

nF (%,0)™ = Fomni (%, Oppmmi)" ™™ (13.12)

where N; is the number of sea states or events for the i'th direction and 8;, the
estimated distribution parameter. This is ensured by estimating the distribution
parameters for the individual distributions and then minimising the deviation:

6 Z|: ln Om‘l’llln omm(x omnl))

2
+In <— Z NilnFi(xj, é,))l
i=1

Here x; are extreme values of the parameter for which the optimisation is
carried out, i.e., the product of the directional non-exceedance probabilities is
forced to match the omnidirectional for these values of the parameter in
question.

(13.13)

The directional extremes presented in this report are given without scaling, that
is, a Tyr event from direction i will be exceeded once every T years on the
average. The same applies for monthly extremes. A Ty, monthly event
corresponds to the event that is exceeded once (in that month) every T years,
which is the same as saying that it is exceeded once every T/12 years (on
average) of the climate for that month.

13.4.1 Optimised directional extremes

The directional extremes are derived from fits to each subseries data set
meaning that a Tr year event from each direction will be exceeded once every
Tr years on average. Having e.g., 12 directions, this means that one of the
directions will be exceeded once every Tr/12 years on average. A 100-year
event would thus be exceeded once every 100/12 = 8Y4 years (on average)
from one of the directions.
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For design application, it is often required that the summed (overall) return
period (probability) is Tr years. A simple way of fulfilling this would be to take
the return value corresponding to the return period Tr times the number of
directions, i.e., in this case the 12x100 = 1200-year event for each direction.
However, this is often not optimal since it may lead to very high estimates for
the strong sectors, while the weak sectors may still be insignificant.

Alternatively, an optimised set of directional extreme values may be produced
for design purpose in addition to the individual values of directional extremes
described above. The optimised values are derived by increasing (scaling) the
individual Tr values of the directions to obtain a summed (overall) probability of
Tr years while ensuring that the extreme values of the strong sector(s) become
as close to the overall extreme value as possible. In practice, this is done by
increasing the Tr of the weak directions more than that of the strong sectors
but ensuring that the sum of the inverse directional Tr’s equals the inverse of
the targeted return period, i.e.:

n
Z 1 _1 (13.14)
=1 TR,i TR,omni

where n is the number of directional sectors and Tromni is the targeted overall
return period.

13.5 Uncertainty assessment

The extreme values are estimated quantities and therefore all associated with
uncertainty. The uncertainty arises from several sources:

Measurement/model uncertainty

The contents of the database for the extreme value analysis are associated
with uncertainty. This type of uncertainty is preferably mitigated at the source —
e.g., by correction of biased model data and removal of obvious outliers in data
series. The model uncertainty can be quantified if simultaneous good quality
measurements are available for a reasonably long overlapping period.

True extreme value distribution is unknown

The distribution of extremes is theoretically unknown for levels above the levels
contained in the extreme value database. There is no justification for the
assumption that a parametric extreme value distribution fitted to
observed/modelled data can be extrapolated beyond the observed levels.
However, it is common practice to do so, and this obviously is a source of
uncertainty in the derived extreme value estimates. This uncertainty, increasing
with decreasing occurrence probability of the event in question, is not
guantifiable but the metocean expert may minimise it by using experience and
knowledge when deciding on an appropriate extreme value analysis approach.
Proper inclusion of other information than direct measurements and model
results may also help to minimise this type of uncertainty.

Uncertainty due to sampling error

The number of observed/modelled extreme events is limited. This gives rise to
sampling error which can be quantified by statistical methods such as Monte
Carlo simulations or bootstrap resampling. The results of such an analysis are
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termed the confidence limits. The confidence limits (see Section 13.6) should
not be mistaken for the total uncertainty in the extreme value estimate.

Settings of the analysis (judgement)

Any EVA involves the need to define the various settings of the analysis
(threshold, distribution, and fitting method), which introduces subjectivity to the
analysis. The sensitivity of these settings can be assessed by comparing the
resulting extreme values, and the goodness of fit can, to some extent, be
objectively assessed by statistical measures. However, standard practice
typically includes manual inspection of the fitted distributions. Hence, the final
settings, and thus results, relies on the experience and preference of the
metocean expert conducting the analysis (‘engineering judgement’). The tail of
the distributions (the values of long the return periods) can be particularly
sensitive to the settings of the analysis.

13.6 Confidence limits

The confidence limits of extreme estimates are established from a bootstrap
analysis or a Monte Carlo simulation.

The bootstrap analysis estimates the uncertainty due to sampling error. The
bootstrap consists of the following steps:

1. Construct a new set of extreme events by sampling randomly with
replacement from the original data set of extremes

2. Carry out an extreme value analysis on the new set to estimate T-year
events

An empirical distribution of the T-year event is obtained by looping steps 1 and
2 many times. The percentiles are read from the resulting distribution.

In the Monte Carlo simulation, the uncertainty is estimated by randomly
generating many samples that have the same statistical distribution as the
observed sample.

The Monte Carlo simulation can be summarised in the following steps:

1. Randomly generating a sample consisting of N data points, using the
estimated parameters of the original distribution. If the event selection is
based on a fixed number of events, N is set equal to the size of original
data set of extremes. If the event selection is based on a fixed threshold,
the sample size N is assumed to be Poisson-distributed.

2. From the generated sample, the parameters of the distribution are
estimated, and the T-year return estimates are established.

Steps 1 and 2 are looped numerous times, whereby an empirical distribution of
the T-year event is obtained. The quartiles are read from the resulting
distribution.

13.7 Joint probability analyses (JPA)

Values of other parameters conditioned on extremes of one variable are
estimated using the methodology proposed in [37] (Heffernan & Tawn). This
method consists in modelling the marginal distribution of each variable
separately. The variables are transformed from physical space, X, to standard
Gumbel space by the relationship:
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Y = LN (—LN (F(x, é))) (13.15)

where F(X,8) denotes the distribution function of the variable, X, with estimated

parameters, 8. No restriction is given on the marginal model of the variables. A
combination of the empirical distribution for the bulk of events and a parametric
extreme value distribution function fitted to the extreme tail of data was
adopted here. For parameters which may have both a positive and a negative
extreme such as the water level conditioned on wave height, both the positive
and the negative extreme tail are modelled parametrically.

The dependence structure of the two variables is modelled in standard Gumbel
distribution space, conditioning one variable by the other. The model takes the
form:

(ValYy = y,) = ay, +yPZ (13.16)

with Y1 being the conditioning variable and Y> the conditioned. The residual, Z,
is assumed to converge to a normal distribution, G, with increasing y1. The
parameters, 4 and b, are found from regression and the parameters, fi and G,
of the normal distribution, G, estimated from the residuals, Z:

Ya—a Yy,

z=22 71 13.17
vy ( )

Figure 13.2 shows an example of the modelled dependence structure for Hmo
and water level in standard Gumbel space. Figure 13.3 shows the same in
physical space. The model is clearly capable of describing the positive
association between wave heights and water level for this condition and
appears also to capture the relatively large spreading.

The applied joint probability model is event-based. This means that
independent events of the conditioning parameter are extracted from the model
data. The combined inter-event time and inter-event level criterion described in
Section 13.1 is applied to isolate independent events of the conditioning
parameter. The conditioned parameter is extracted from the model time series
at the point in time of the peak of the conditioning parameter. Time averaging
of the conditioned parameter is often carried out prior to data extraction to
reduce the influence of phases in the analysis (the fact that the water level may
not peak at the same time as the peak wave height for instance).
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Figure 13.2 Dependence structure of Hmo and water level transformed into
standard Gumbel space.
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Figure 13.3 Dependence structure of Hno and water level in physical space
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14 Appendix D: J-EVA Summary

This section gives a generic overview of the Joint-Extreme Value Analysis (J-
EVA) methodology applied to provide extreme estimates of metocean variables
(e.g., Hmo and Cmax). Aspects specific to EINS are also discussed.

14.1  Joint Extreme Values Analysis (J-EVA)

J-EVA (Joint-Extreme Value Analysis) is DHI's implementation of a consistent
directional-seasonal extreme value analysis method incorporating a Markov
Chain Monte Carlo (MCMC) Bayesian inference approach to include
uncertainties. It is based on the work in [38].

J-EVA comprises of two models, 1) a storm model (see Appendix E: J-EVA —
Storm Model), and 2) a statistical model (see Appendix F: J-EVA — Statistical
Model). Both models are outlined in the following subsections which highlight
the most relevant components of each. A concise step-by-step overview of the
J-EVA methodology is as follows:

1. Extreme events (storms) are identified from either modelled hindcast
according to criteria ensuring independent events. At EINS, the local peaks
are identified from the corresponding time series of the variables for which
extreme values are estimated, requiring at least 36 hours between peaks
and a required drop in the time series value of 0.7 times the value of the
lowest of the surrounding peaks. The start and end cut-off of the selected
storm is set to 0.5 x maximum value of the time series.

2. Characteristic storm variables are computed as explained in Section 14.2.

3. The identified storms that are selected by their peak magnitude and
duration are further filtered using regression quantile and (only for wave
parameters) inverse wave age criteria.

4. From the J-EVA statistical model a spline model is constructed and fitted
(both marginal distributions and conditional distributions between the storm
parameters) to the storms with covariates for direction (e.g., wave or
current direction) and season (e.g., months) when appropriate. The spline
model varies smoothly across the covariates.

5. Posterior distributions of model parameters are found using a Markov
Chain Monte Carlo (MCMC) approach. The posterior predictive
distributions implicitly include uncertainties through the propagated errors
in the prediction.

6. Many events (typically 1,000,000 years) are sampled from the posterior
distributions and then real storm trajectories (displaying intra-storm
variation and hence resolving the individual sea states) are simulated from
matching the simulated storms with the historical storm time series using
the J-EVA storm model. The EINS specific inputs are mentioned in Section
14.4-14.4.2.

7. Extreme values with return period T-years are then given by the (N/T,)"
largest value in N years of simulations.

While presenting the results of the J-EVA analysis, a credible interval is always
presented as a shaded area. A credible interval is a concept used in Bayesian
statistics, which is the central theme of the J-EVA analysis. The concept of
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credible interval is very different from the concept of the confidence interval
used in Frequentist statistics approach. A credible interval is simply the central
portion of the posterior distribution that contains a chosen percentage of the
values. At EINS, a range of 2.5% - 97.5% interval is chosen that is equal to
95% credible interval. In other words, given the observed (simulated) data
characterised by the likelihood function, the effect that is characterized by the
posterior distribution has a 95 % probability of falling within this range.

14.2 J-EVA storm model

The J-EVA storm model makes use of the evolution in time (also termed intra-
storm evolution) of historical storm events to make predictions of the evolution
in time of possible events with extremely low exceedance probability.

A detailed description of the J-EVA storm model is given in Appendix E: J-EVA
— Storm Model and in Section 2 of . Outlined here is a
concise description of the storm model.

Storm events evolve in time with a build-up phase, a storm peak, and a decay
as the storm moves away and/or a low-pressure system decay. It is important
to accurately model this time evolution and not just the storm peak itself, as the
time evolution has a direct impact on the short-term response, e.g., Cmax.
Directionality is also important in this context as wind and wave direction
typically shift during a storm passage. The J-EVA storm model is used to
capture this evolution of relevant metocean variables (Hmo, Tp, WS10 etc.) in
storm events.

The individual waves and crests are stochastic processes with distributions
conditional on the underlying sea state properties. This also means that not
only storm peak Hmo, but also storm duration become important. These are
estimated in the J-EVA storm model.

A storm that lasts for many hours is more likely to produce an abnormal wave
crest compared to a storm that decays rapidly. This was already treated by
Tromans and Vanderschuren in their most probable maximum response model
[39]. The application of the Tromans and Vanderschuren model has been
adapted to characterise the storm magnitude, not by the most probable
maximum response, but rather by the storm peak significant wave height
Hmo,peq Of @an “equivalent storm” exhibiting a Gaussian bell-shaped profile in
time. Storm duration is then quantified using the standard deviation geq Of the
Gaussian bell, expressed in multiples of the spectral zero-crossing period. The
latter is like Tromans and Vanderschuren’ N parameter. Read further in Section
15.2 of Appendix E: J-EVA — Storm Model and Section 2.1 of

14.2.1 Directional and seasonal variability

J-EVA treats directional and seasonal variations in the statistical distribution of
metocean variables (e.g., Hmo) using non-stationary extreme value
distributions. This means that the distributions can vary with season and
direction, according to the information in the historical extreme events. The
non-stationarity is implemented using penalised B-splines that allow for smooth
variations of distribution parameters in multiple dimensions. This is done to
capture the significant directional and seasonal variations in the wind, wave,
and current conditions at EINS. Read further on the penalised B-splines in
Section 2.2 of
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For datasets with directionally or seasonally distinct distributions, it is possible
to use only one covariate. For example, the marginal distribution of water level
is direction-less and only fitted with a seasonal covariate at EINS.

14.3 J-EVA statistical model

The J-EVA statistical model is used to estimate the statistical distribution of the
characteristic storm values of the metocean variables returned by the J-EVA
storm model.

A detailed description of the J-EVA statistical model is given in Appendix F: J-
EVA - Statistical Model and Section 2.2 of .What follows is
an outline of the basis of the statistical model.

This model has a three-step process; 1) the independent estimate of non-
stationary marginal models for each model parameter; 2) the estimation of the
non-stationary conditional extreme models; and 3) the estimation of the rate of
occurrence of storm events by a Poisson process. All parameters in 1) to 3) are
inferred by Markov Chain Monte Carlo (MCMC) Bayesian inference.

MCMC is a statistical method to approximate a posterior distribution by
randomly sampling in a probabilistic space, hence it utilises the known data.
This technique has the advantage that the model parameters of interest are
represented by statistical posterior distributions rather than fixed values and
hence also provides an estimate of the uncertainty.

The marginal distributions are estimated using the assumption that the
marginal probability distribution of each variable can be expressed as the sum
of three parts. The first part describes the bulk of the data by a truncated
gamma distribution using Bayesian inference with sample log-likelihood. While
the second and third parts consisting of the upper and lower tails (if relevant)
are then assumed to follow Generalised Pareto (GP) distributions. The tails are
defined as exceedances of upper and lower quantile thresholds of the marginal
distribution given covariates with specified non-exceedance probabilities.

14.3.1 Estimation of the model parameters

The estimation of the model parameters is carried out using Bayesian MCMC
technigues. Model parameters, in this case, refer to the distribution parameters
for the truncated gamma and GP distributions. Rather than using a single value
for the model parameters, this method utilises a distribution of the model
parameters which are then sampled from. A prior, or best-guess, based on the
hindcast data is used to initiate the MCMC method.

J-EVA integrates over uncertainty when providing extreme value estimates.
This type of extreme value estimate is called posterior predictive. This is
particularly important when J-EVA returns extreme value estimates for return
periods far beyond the duration of the historical time series (from measurement
or hindcast) used for estimation, as the uncertainty in the estimates increases
for increasing return periods. By integrating over the uncertainty, one accounts
for the increased uncertainty and the provided extreme value estimates
become more robust.

Posterior predictive distributions of metocean variables (e.g, Hmo, CS) are
obtained by simulating many years, i.e., integrating across the posterior
distributions of the model parameters. In practice this is done by integrating
over a random set of iterations in the MCMC chains. Extreme values for
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various return periods are given by quantiles of the posterior predictive
distributions (see Eq. 14.1) Using this approach, the extreme values provided
by J-EVA implicitly include statistical uncertainty in contrast to T-EVA used by
DHI where bootstrapping is often performed providing confidence intervals.

The extremes calculated from shorter hindcast time series are not necessarily
higher than extremes obtained from longer time series (even though the
statistical uncertainty is higher), as the estimated extremes depend on the data
itself. However, when everything else is equal, increased uncertainty will result
in increased extreme value estimates, when posterior predictive estimation is
used.

Results in the form of posterior predictive extreme values (of e.g., Hmo, Cmax)
are obtained from quantiles (qy) in the distribution of the annual maximum. The
relationship between quantile and return period is given by:

1 Eq. 14.1
e

T

For the evolution of each storm event needed for determining the long term
distributions of the short-term responses (Hmax and Cmax) the J-EVA storm
model is applied again to scale the simulated events with the physical correct
historical events. A cross validation scheme is applied to evaluate the
predictive power of the spline model.

14.3.2 Conditional extreme model

A conditional extremes model, adopted from Heffernan and Tawn, [37], is used
to model the joint probabilities. This type of joint probability model models the
distributions of variables conditioned on one of the variables being extreme and
is therefore useful for modelling the distribution of e.g., wave period or water
level conditioned on extreme significant wave height. Figure 14.1 shows an
example of a joint distribution of T, and Hmo from 50,000 years simulated data
compared to hindcast data. Likewise, parameters relevant for Cmax (i.€., Toz
and To2 and WL) are conditioned on extreme Hmo.

The conditional extreme model is further described in Section 1.4 and Section
5.3 of
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Figure 14.1 Example of joint distribution of T, and Hmo [38].
T on Hmofor each sea-state in the simulated storms. Scatter plots of
50,000 years of simulated data (coloured round markers) compared
to hindcast data (black dots); “warmer” colours indicate a higher rate
of occurrence of simulated events. Solid lines represent directional
density contours for the 10- and 100-year marginal extreme values.

14.4 J-EVA simulation

The concept of simulation is used to obtain the extreme value estimates based
on the fitted statistical model parameters as explained in Section 14.3.1 and
14.3.2. The number of exceedances Ne of an extreme value is used as input,
which is then applied on the largest chosen return period T.. At EINS, the
largest T, = 10,000 years, so, if Ne is chosen as 50, then the number of
simulations carried out for estimating the 10,000-year extreme are 5x10°.
Extremes estimated for T,<10,000 years will then have more exceedances
contributing to the robustness of the estimate.

14.4.1 Directional Scaling

The concept and the need of directional scaling is explained in Forristall [40].
The concept itself is independent of the method used for estimating the
extreme values. The directional scaling is applied to the estimated directional
extremes following the recommendations in DNV [41].

In J-EVA, the implementation is carried out while simulating the extremes. In
summary, a two-step scaling procedure is implemented for the marginal
extremes.

1. The directional extremes are simulated for return periods corresponding to
half the number of directional sectors. At EINS, this corresponds to
simulating the directional extremes for return periods T, =[1, 5, 10, 50, 80,
100, 1000, 10000] x 16/2 = [8, 40, 80, 400, 640, 800, 8000, 80000] years.

2. The estimated directional extremes are capped with the omnidirectional
extreme corresponding to the original return periods. For example, if in step
1, the estimated Hmo = 14.9 m corresponding to a direction of 315° mean
wave direction for T, = 80000 years, then it is capped with Hno = 14.6 m
that corresponds to an omnidirectional Hmo for T, = 10000 years.
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The estimated fit parameters based on the unscaled extremes are used to
evaluate the conditioned variables of the scaled extremes.

14.4.2  Simulation Optimization

The simulations used to obtain the extreme value estimates are optimised
depending on the requested return periods, such that the very long simulations
required to estimate extreme values with long return periods only include the
relevant events above a high threshold. Shorter simulations with no threshold
are then made for the short return period extremes. At EINS, because the
directional scaling is applied, the largest T, = 80,000 years. The optimization is
carried out such that up to T, < 100 years, the estimates are based on
simulations of 80,000 years, while for 100 < T, < 80,000, the estimates are
based on simulations of Ne x 80,000 years.

14.5 Convolution of short-term distributions

The predicted events from the J-EVA storm model are numerically folded with
the wave height and crest level distributions (e.g., Forristall [42] or Glukhovskiy
[43]) to estimate the long-term distribution of the individual wave heights and
crest levels. For further information, the reader is referred to Section 4 of

The residual water level is modelled conditionally on the extreme significant
wave height. A residual water level therefore becomes available for every
storm and for every sea state in the storm such that it can be used in the short-
term distribution.

14.6  Sampling of tidal signal

Tide is a deterministic process and thus not eligible for extreme value
assessments assuming a random population, hence, to comply with statistical
requirements, tidal variations are introduced separately to the extreme value
estimation.

Water levels concurrent with waves are introduced via a model for the
distribution of residual water level conditional on extreme Hmo, followed by the
addition of a sampled tidal signal. By using this method, it has been assumed
that the tide has no influence on Hmo nor on the residual water level. This
assumption is often valid in intermediate to deep waters but may not be valid in
shallow areas with the significant tide.

Tidal water level signals are sampled for every storm event from a hindcast
tidal data series from within a period with similar seasonality to account for
seasonal bias. The total water level, i.e., the distance from a fixed datum (MSL
or LAT) to the still water level (SWL), is the sum of the residual and tidal water
levels. It is, therefore, straightforward to include the effect of tide and surge on
the extreme crest elevations in a statistically consistent manner.

Similarly, tidal current flow is sampled and combined with the residual current
flow conditioned on the extreme waves.
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14.7 Limitations on wave height

Wave breaking is implicitly accounted for via a depth-dependent reduction in
the hindcast modelled Hmo (due to increased energy dissipation in the white-
capping, bottom-friction, and wave breaking source terms).

Furthermore, for the long-term distribution of Hmo peq (€quivalent peak Hmo from
the storm model) has been limited to 0.6 times the water depth in the statistical
model. This is considered a conservative estimate of the maximum depth-
limited significant wave height.

Actual evidence of depth limits to significant wave height in field data sets is
very rare. However, based on previous experience including literature studies,
there is no knowledge of values higher than 0.6 being reported anywhere.

In exposed and shallow areas, this will significantly limit the tail of the Hmo
distribution, see Figure 14.2 for a graphical example. The extrapolation of the
extreme distribution extends past the expected physical limit of 0.6 times the
water depth (in this example case, the water depth is approximately 17m).

Wave breaking is however not accounted for in the Forristall short-term
distribution of Cmax and only indirectly for some short-term distributions of Hmax.
(i.e., the Glukhovskiy distribution).

Extreme Hm (1979;01-01 -2018-12-31)

0

- *  Data Point (N = 40)
ook RYS Extreme Distribution
Confidence Limits

HmO (m]
10.73, 7 11.32

(]

[years]

Tr

Distribution: Gumbel
Location = 7.44m
Scale =0.84m

Events: Annual Maxima

Fitting: Max. Likelihood

Plotting pos.: Gringorten

Uncertainty: Hessian

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Figure 14.2 Example of extreme value distribution of Hyno at a water depth of
17 m with a Gumbel distribution fitted to the annual maxima
using maximum likelihood (grey line). No limiting wave
breaking is inferred. Upper limit of Hno assumed as 0.6 x 17 =
10.2m shown by the orange line.

In such cases the limit of Hmo due to water depth in the J-EVA storm
model would effectively reduce the extreme Hmo at the tail, also
below the actual limit, i.e., towards the blue line.
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15 Appendix E: J-EVA - Storm Model

The theory and methodology behind the DHI J-EVA storm model are
described here. The methodology is based on the work presented in
Hansen et al. (2020)[44].

The J-EVA (Joint-Extreme Values Analysis) storm model is a model for the
description of wave characteristics of storm events. The model is used in
conjunction with the J-EVA statistical model to describe the long-term
distribution of individual wave and crest heights and possibly also wave-
induced structural loading.

The model defines characteristic storm variables from the historical hindcast or
measured record of slowly time-varying variables such as (but not limited to)
significant wave height, peak period, mean or peak wave direction, storm surge
and wind speed. These characteristic values are suitable for statistical
modelling using the J-EVA statistical model. The statistical modelling of
characteristic storm variables will allow for generation of long series of
simulated storm parameters. The J-EVA storm model can then be applied in
reverse to generate intra-storm time series of the slowly varying variables.

Numerical folding with any short-term distribution model of wave or crest height
or a structural load or load response may be carried out on the intra-storm time
series to generate the long-term distribution of the response.

15.1 Characterisation of Historical Storms

The J-EVA storm model is applied on a time series of slowly varying
environmental variables. This time series must include the significant wave
height and a measure of the mean wave period but can include any other
environmental variable of interest. The time series must be on an equidistant
time axis with sufficiently small-time step size that the time-evolution of the
storm events of interest are adequately resolved.

The steps followed to convert this continuous time series into individual storm
events and then to characterise each event are described in this section.

15.2 Wave Height and Storm Duration

Storm events are identified by their significant wave height. Standard
metocean techniques for separating the continuous time series of significant
wave heights into individual (storm) events consist in defining a minimum time
separation between consecutive storm peaks and moreover often an additional
requirement that the level must have dropped below a fraction of the minor of
consecutive peaks in order for those to be defined as two separate events.
This additional requirement ensures that storms with long durations are not
unintentionally split into separate events.

The time series of H,,, is de-clustered into independent events by requiring
that there is a pre-specified minimum interevent time between events. The
minimum interevent time is dependent on the meteorological events generating
the storms but is typically in the order of 18-36 hours for extra-tropical
cyclones. Moreover, events are only separated if the significant wave height
has passed below 75% of the minor of two adjacent events.
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The distribution of the maximum short-term response in each historical storm is
then calculated. The empirical short-term distribution of individual wave height
H conditional on H,,, by Forristall (1978) is typically applied, though the actual
choice of short-term distribution model is not important, as long as the
distribution is continuous. The Forristall (1978) short-term distribution of H
conditional on H,,,4, P(H < h|H,,), is given by:

h )2-126> (15.1)

P(H < thmO) =1—exp <— <W
. mo

The distribution of the maximum wave in storm i, H,,,, ; is given by the
following product over the n; sea states making up storm i:

e (15.2)
P(Hpari < h) = HP(H < A|Hpo ;)"
j=1
The number of waves in sea state j, N;, is estimated by dividing the duration of
the sea state (time step size in the input time series) by the mean zero-
crossing period* over the sea state. The most probable storm maximum wave
height, H,,,;, is found by solving the following equation for h:

1 (15.3)
oD~ Y

It is shown in the original work by Tromans and Vanderschuren (1995), that
when P(H|H,,) is of a Weibull type distribution, Eg. (15.2) converges to a
generalised Gumbel distribution:
h a
-1
Hmp,i) )

where « is the shape factor of the wave height distribution (=2.126 in the
Forristall 1978 distribution) and N; is the equivalent number of waves in the
storm.

P(Hpaxi <h) =

(15.4)

P(Hmax_i < h)~exp —exp| —InN; <<

The duration of the storm and thereby the value of N is related to the
narrowness of the distribution of the storm maximum wave. Storms with long
durations and thereby many sea states of similar magnitude will have a
narrower distribution of the storm maximum wave, compared to those storms in
which the maximum wave will come within a relatively short period in time (i.e.
within very few sea states).

This property is used in the J-EVA storm model to characterise storms by peak
magnitude and a duration. A Gauss-bell shaped curve is chosen to represent
the variation in time of H,,,. The variation in time of H,,, is defined by
equivalent storm peak, H,,,, hereafter termed Hp, 5, .q. @nd equivalent storm
duration given by the Gauss-bell standard deviation, g,,, as:

(t*)2> (15.5)

2
ZO'eq

Hmo(t*) = HmO,p,eq X exp <_
t* is a pseudo-time measured in number of wave cycles and can be converted
to true time by use of the slowly varying mean wave period. Thus, t* = 0 at the

storm peak (Hy,o = Himopeq) @and any t* < 0 defines the number of wave cycles

4 The second moment period T, is used as a proxy for the zero-crossing period
when spectral wave model hindcast data is used as input
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that will pass before the storm peak is reached, whereas any t* > 0 defines the
number of wave cycles that have passed since the storm peak.

Best-fit values of the peak (Hp,,q) and standard deviation (o,,) of the Gauss-

bell shaped storm are found by mean-square error minimisation of the
differences between the actual storm maximum wave height probability density
and that of the Gauss-bell shaped storm. The minimisation is carried out as
follows:

Sea states with Hp,g < 0.75 X Hy,0 4 ¢4 @re found to have insignificant impact on
the distribution of storm maximum wave height and can be neglected®. From
Eqg. (15.5), we have that the Gauss-bell shaped storm will cross under 75% of
Hpmopeq at a distance from the peak of 0.759¢,, waves. Hence, we create an

evenly spaced vector, t;, of m points, t;, € [-0.7590,4; 0.7590,,] and evaluate
H,,, along this vector for storm i:

(t )2> (15.6)

2
Zo'eq'i

Hpo(ty, ) = Hmo,p,eq,i X exp <_

Each point along this vector represents a sea state of 1.520,,,;/m waves. The
distribution of the maximum wave in the storm is now given by Eg. (15.2), i.e.:

m
1.520,,:/m (15.7)
P(Hmaxi < h) = HP (H < MlHmo(t))
j=1

The probability density is obtained by numerical differentiation of Eq.(15.7) and
the squared difference of this probability density function and that of the actual
storm is computed. Minimisation of the squared difference is carried out by
changing the values of Hp,g ¢4 @and o,4;, Whereby best-fit values of these
parameters are obtained for storm i.

Two examples of storm characterisation are shown in Figure 15.1. The first
storm (top panel) is an example of a persistent storm lasting for many hours,
while the second storm (bottom panel) is more intense in its peak but lasting
only a few hours. These differences are reflected in the relative values of
Hpnopeq @Nd 0gq.

15.3 Associated Environmental Variables

Characteristic storm values of all associated environmental variables to be
included in the subsequent joint-probability analysis are required. Examples
associated variables are:

- Peak wave direction, PWD

- Peak period, T,

- Second moment period, Ty,

- Directional spreading, gy

- Residual water level, WL,.4;

- Residual current speed, CS,.,; and direction CD,.¢4;

- Wind speed, WS and wind direction WD

5 Though sea states with less than 75% of the peak significant wave height have
negligible influence on the most probable maximum wave in the storm, sea states
down to 65% of peak significant wave height have been included in the build-up of
the storm, as these typically contain some of the steepest sea states, and the
maximum wind speed may also fall early in the storm trajectory.
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These variables vary during the storm and weighted average values are
calculated to provide a characteristic value of the variable for each storm. The
weight factor, w;, for sea states j, j = 1: n; where n; is the number of sea states

in storm i, are computed from the contribution of the individual sea states to the
total storm most probable maximum wave, Hy,;,:

w; = a(Hmp,l:n - Hmp,l:n,~j) (15.8)

where Hy,, 1., is the most probable maximum wave height of the storm
considering all sea states in the storm and H,,;, 1., ~; is the most probable
maximum wave height when sea state j is omitted and « is

a normalisation factor. An overbar (e.qg. T_p) is used to denote a characteristic
(weighted average) value of an environmental variable.

The characteristic storm second moment period T, is shown in Figure 15.1 for
the two examples storms. T,, takes values close to the values at the storm
peak.

24-Nov-1981: Hyppear = 9.2m, Hyyy = 16.8m
T T T

10 - =

Toe = 9.5s Adaaddaa,

Hippeq =9.1m
30

Oy =T

_ Historical storm Hmn [m]

Equivalent storm Hmo [m]

A Historical storm T02 [s]

[ + I}
23-11-81 12:00 00:00 12:00 00:00 12:00

09-Dec-2011: Hyp pear = 9.3m, Hypp = 16.0m
T

FS
T

_ Historical storm H_ [m]

| | Equivalent storm Hmo [m]
A Historical storm T, [s]

N

08-12-11 12:00 00:00 12:00

Figure 15.1 Two examples of hindcast historical storms and storm model
parameterisation.
Vertical green bars®: Hourly values of H,,,. Blue triangles: Hourly
values of Ty,. Characteristic storm variables H,,, ¢q, 0eq and T,
values printed on figure.

6 The filled bars mark the sea states which are retained from each storm for
subsequent intra-storm simulation, see section 15.4.
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15.4 Simulation of Intra-Storm Variation

The J-EVA storm model is also used to simulate intra-storm variation of the
environmental variables model. The intra-storm variation refers to the hourly
variation of the variables during a storm event exemplified by for instance the
build-up and subsequent decay of wind speed and significant wave height, the
rotation of the mean wave direction and the increase in wave age from steep
young wind waves during build-up to swell waves during storm decay.

The simulation of intra-storm variation consists in matching up simulated
storms with similar historical storms followed by a scaling of the similar
historical storm time series.

15.4.1  Similarity and Storm Resampling

A methodology developed to identify the historical storms most similar to the
simulated storm is described in this section. The method builds on a flexible
concept of storm dissimilarity. The smaller the dissimilarity, the more
representative the historical storm is assumed to be of the simulated storm.

The dissimilarity criteria are established in order to select a historical storm to
represent the storm modelled through the J-EVA statistical model. The
dissimilarity criteria are inspired by Feld et.al (2015).

In the following, ( is used to denote any characteristic storm variable (e.g.
Hnopeq OF T_p) and w to denote the corresponding intra-storm variable (H,,,, or

T,).

Dissimilarity is first calculated for each variable listed below as follows for
historical storm, i, and simulated storm, k:

dojix = |'QHIST,i - QSIM,k| / 0q (15.9)

with g7 being the standard deviation of this variable through all included
historical storms. This weight factor is found to provide a reasonable balance
between the various variables, but it is possible to apply weight factors in
addition to this, in order to better match for instance significant wave height
between historical and simulated storms.

Dissimilarities are calculated for the relevant variable which may be considered
important in terms of describing the storm evolution.

Overall storm dissimilarity for simulated storm k, d,, is calculated by summing
up the square of the individual dissimilarities, for each historical storm, i.e.:

no (15.10)

where Q = 1: v represent the v different environmental variables included in the
dissimilarity criterion. After having ranked the historical storms in terms of
(dis)similarity, one of the most similar historical storms is picked randomly
amongst the least dissimilar ones. The randomly selected storm is then used
to represent the intra-storm variability of the modelled storm, after appropriate
scaling (see next section) is conducted.

" oywp and Os.qs0n COrrespond to half of the standard deviation of the
corresponding parameters, to account for their periodicity.

147



<

Typically, the representative storm is selected amongst the 20 most similar
storms, but the end results are not very sensitive to this number because of the
applied scaling.

15.4.2 Historical Storm Scaling

Having sampled a historical storm amongst the most similar ones, the intra-
storm variation of the historical storm is scaled such that the characteristic
storm variables of the scaled storm matches those of the simulated storm.

The proposed scaling methodology assumes that a constant scaling factor
applies for the entire storm. As water levels vary around zero, a reference
level of 10 meters below the sea surface is used in order to avoid division by
zero.

Scaling of the selected historical storm variables to generate the time series of
simulated storms is conducted as follows:

1. Establish a scaling or correction factor based on the characteristic storm
variables of the simulated (subscript SIM) and selected historical storm
(subscript HIST) using the generic formulation:

ag = Qsim / Quist (15.11)

2. Correct the historical storm time series of parameter wy;sr to obtain the
intra-storm variability of the simulated storm, wg;y ;, as follows (for time
step j)):

Wsiy,j = QAq " WHIST,j (15.12)

Specifically, for directional variables (wind, wave and current directions, here

generalised by the notation 8), a rotation rather than scaling is applied:

g = Osim — Omist (15.13)

The intra-storm variability of the directional variable is then obtained as (at time

step j):

gk = Og + BHIST,j (1514)

Typically, peak (or mean) wave direction is used as a co-variate (distributions

vary with wave direction) and wind and current directions are not simulated in

the J-EVA statistical model. In this case, the wave direction rotation factor,
apwp, iS also used to rotate the current and wind direction time series such that

wind-wave and current-wave misalignment from the historical storm is
maintained in the simulated storm.

For residual water levels, that can also take negative values, the scaling is
done relative to a minimum level, WL,.f, that is never surpassed:

WLsip + WL,y

WL = (Whigsr + Wlay) et
/ ( HIST.] ® f) WlLyist + Wl

— Wlges (15.15)

The reference water level could be taken as the water depth at the site, which
in practice would mean that the water level in the simulated storm would be the
water level in the historical storm shifted by the difference WiLg;y — WLy sr.
Typically, we use WLg., = 10 m, which implies a moderate scaling of the water
levels beyond the scaling that is coming from the simulated value from the
long-term model, W Lg;y,.
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In addition to the adjustment of the time series values, the time is also scaled in
order to maintain the number of waves in the storm, and therefore keep H,, 4,
and C,,,, estimates the same. The time scaling is performed as follows:

(15.16)

TlmeSIM = TlmeHIST " aTOZ " ao-eq

with ar,, and U, being the scaling factors applicable for T, and storm
duration a,4, respectively.

It follows from this scaling method that an exact recovery of the historical storm
is obtained in the case of an exact match between the simulated and historical
characteristic storm variables.

Storms are defined to begin at the last up-crossing of 60% of peak H,,, prior to
the peak and end at the first down-crossing of 75% of peak H,,, after the storm
peak. Sea states with H,,,, > 75% of peak H,,, are contributing to the
distribution of the maximum wave within a storm. The extension down to 60%
of peak H,,, at the storm build-up is introduced to ensure that the peak wind
speed is included in the storm. The sea states thus included are marked as
filled bars in Figure 15.1. Storm peaks must as a minimum be separated by
the specified inter-event time, typically between 18 and 36 hours for extra-
tropical cyclones, to be treated as separate events.

15.5 Heights and Periods of Individual Waves

The methods described in the previous sections define a way of developing
time series of the slowly varying parameters (H,,, T, etc.) in each simulated
storm, whereby we obtain the long-term distribution of the slowly varying
parameters. From these time series we can easily derive the long-term
distribution of individual wave and crest heights.

The individual wave and crest heights are stochastic variables conditional on
the properties of the underlying sea state, and their distributions are typically
termed the short-term distributions. We use Monte Carlo simulation to fold
these short-term distribution with the long-term distribution of the underlying
slowly varying sea state parameters. This Monte Carlo simulation involves
sampling a maximum short-term response for every sea state in every
simulated storm.

The Forristall crest height distribution is used here as an example of how to
sample the hourly maximum of a short-term response. The inverse cumulative
distribution function of the hourly maximum Forristall crest height is given by:

1
F_l(nmax) = Hpoa <—ln <1 — Pﬁ>>ﬁ (15.17)

where:

P Non-exceedance
probability

N Number of waves in sea (= 3600s/Ty, for a one-hour sea state)
state
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Distribution shape V2/4 + 0.2568S; + 0.0800Ur (Forristall Crest)
B Distribution shape 2 —1.7912S; — 0.5302Ur + 0.2824Ur? (Forristall Crest)
_ 2T Hmo
Ty Té
Hm()
U =
"Ta
k, Wave number for 1/Toq
frequency

d Water depth

The Monte Carlo analysis simply consists in sampling the non-exceedance
probability P randomly and independently for every sea state and calculate the
corresponding 1,,4,. Note that the short-term distribution varies from sea state
to sea state as the parameters H,,,, Ty1, To2 and the water depth may vary (the
latter due to effects of tide and surge). The long-term distribution of annual
maximum crest height and corresponding extreme value estimates are derived
by considering only annual maximum crest height, as explained in Eq. (15.5).

Crest height relative to a fixed datum are obtained by adding tide and surge
values for each sea state prior to extraction of annual maxima.

15.5.1 Associated Wave Periods

The period of individual maximum waves (Tyma) Will vary because of varying
sea state characteristics (variability of T,, given H,,,) but also because of the
randomness of the sea state itself. The most probable period, given a sea state
(wave spectrum), is well approximated by the so-called linear new wave, [45],
but there is obviously some random variability around this most probable value.
This latter variability has been combined (convolved) with the random
variability of the sea state characteristics by simulating linear random wave
trains from a frequency spectrum for the sea states giving rise to the annual
maximum waves and extracting the period of the highest wave from each
simulation. Any frequency spectrum can be used for this, but the JONSWAP
spectrum is typically adopted.

To obtain stable empirical conditional distributions of the wave periods many
simulated sea states are required.
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16 Appendix F: J-EVA - Statistical
Model

This document describes the theory and methodology of the DHI J-EVA
statistical model. The methodology is based on the work presented in
Hansen et al. (2020)[46].

The J-EVA (Joint-Extreme Values Analysis) statistical model is a tool for
making extreme value analysis of a set of parameters with a-priori unknown
joint dependence properties. Application of J-EVA requires as input a set of
independent ‘events’ with concurrent values of the parameters being modelled.
A typical example is storm peak significant wave heights, associated wave
period, storm surge, wind speed, but the tool is generic and can model any
kind of stochastic non-discrete parameters, as long as they fulfil the
requirements of independence and identical distribution (iid). The input data
may come from measurements or numerical hindcast models or a combination
hereof, and the usual requirements to data consistency and quality also apply
here.

Covariates may be defined if a-priori knowledge about variations in extremal
properties is suspected. Typical examples of covariates are direction and/or
season. Non-parametric smooth variations with covariate(s) are implemented
using a B-spline technique (see Section 16.3 for details) and periodicity (as is
the case for both direction and season) is possible. The use of covariates also
implies that the requirement of identical distribution only applies for random
variables sharing the same covariates (as for instance waves from the same
direction occurring during the same time of year). It is not recommended to
apply the model across discontinuous (abrupt) covariate variations. Extreme
value models incorporating covariates are called non-stationary extreme value
model in the statistical literature.

The statistical uncertainty due to the typically limited sample size of historical

extremes is estimated by the tool and may be propagated through to the end

results. A Bayesian Markov Chain Monte Carlo (MCMC) technique is adopted
(see Section 16.4 for details).

16.1 Model components

The J-EVA statistical model contains the following model components.

e Marginal models describing the marginal distribution of each parameter
(i.e., the distribution of the parameter without considering the values of
the remaining parameters)

e Rate of occurrence describing how often a parameter (event) occurs

e Conditional extremes model describing the distribution of other
parameters conditional on a selected parameter being extreme

Each of the components is detailed below.
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16.2 Marginal models

Marginal (univariate) distributions are fitted to each stochastic variable in turn.
A combination of a gamma (T) distribution, modelling the bulk of the data, and
Generalized Pareto (GP) tails modelling the distribution tails above a threshold
is used for the marginal distributions. Whenever relevant, both the upper and
lower tails are modelled with a GP distribution, the lower tail basically being a
GP tail fitted to the reversed data below the low threshold.

Uy —X\"E (16.1)

Pr(uq|a, ) {1+ & 7 ,x < Uy

1
P(x) = { Pr(x|a, ) Uy S x < Uy
1
1_(1_Pr(u2|a;ll)){<1+S(2x_u2) 52} )X > Up
\ ¢
The gamma distribution is given by:

1 a 16.2
Pr(x|“'ﬂ)=m\’(a.;x> (16.2)

where I'(a) is the complete gamma function and y (a,%x) is the lower
incomplete gamma function.

The model parameters defining the marginal distributions are:

a gamma distribution shape parameter

i gamma distribution mean parameter (gamma shape multiplied with
gamma scale parameter)®

& GP shape parameter for lower tail

{1 GP scale parameter for lower tail®

& GP shape parameter for upper tall

¢ GP scale parameter for upper tall

The thresholds, at which the GP tails take over, are set as quantiles in the
gamma distribution of the bulk data, i.e.

u; = Prl(xy) (16.3)

u, = Prt ()

where k is a constant (covariate-free) non-exceedance probability. Threshold
uncertainty is included ensemble averaging results over a range of values for
K, and k,. These are sampled from a uniform distribution over a pre-set
guantile interval.

The model parameters are estimated in a sequential way; first the gamma
distribution is fitted to all data, then the threshold is calculated from the fitted
gamma distribution and sampled threshold non-exceedance probability and

8 The distribution parameters are practically uncorrelated with this formulation of
the gamma distribution. This improves mixing of the MCMC chain

9 As for the gamma distribution, an orthogonal parameterization has been used,
where adjusted scale parameter, v = {(1 + &), is sampled. For the ease of
interpretation, the results are, however, presented for the scale parameter ¢.
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finally the GP lower and upper tails fitted independently to the data sample
below u,/above u, respectively. The log-likelihood functions are:

n

trj(z|b) = —Z{(a’ —1DlInz; —%ZU —InT(a) —a(lnu —In a)},

i=1
Cep,..i(z|b) = — 2 ln(1+(1+l)ln 1+i(u1—z--) 16.4
LT.] = & 4 Y ( . )
€ep,.i(Z|b) = — z ln(2+<1 +i>ln 1+é(z--—u2)
o i 23>, 62 &

16.3 Rate of occurrence

The occurrence of events is considered a Poisson process and the Poisson
annual rate of occurrence p is required for estimation of annual non-
exceedance probabilities. In the covariate-free case, p is simply estimated by
the total number of historical events divided by the length of the historical data
series in years. In the case of covariates, the covariate domain is divided into
m bins of constant area, A, and the rate the log-likelihood function of p
approximated by [47]

m m (16.5)
p,j(z|b) = Z Ck ln(p(kA)) —A Z p(kA)
k=1 k=1

where c;, is the number of threshold exceedances in bin k.

16.4 Conditional extremes

The conditional extremes model by Heffernan & Tawn (2004), model
distributions of parameters conditional on one parameter being extreme. This is
useful for modelling for instance the distribution of spectral peak period or wind
speeds when the significant wave height is extreme.

The original conditional extremes model proposed by Heffernan & Tawn makes
use of probability integral transform to marginal distributions with standard
Gumbel distributions. This introduces asymmetry in the marginal distributions
and makes modelling of negatively dependent variables somewhat more
complicated than positively dependent variables. Keef, Papastathopoulos, &
Tawn (2013) propose a modification of the model replacing the Gumbel
margins by Laplace margins whereby both positive and negative tails become
exponential. This modification to the original model is applied in J-EVA.

The marginal distributions are defined over the entire range from the ‘lower’
end-point of the lower tail to the upper end-point of the upper tail by the
combined Gamma-GP model (Eqg. (16.1)).

Probability integral transformation to Laplace margins is given by:
In(2P (X)), P(X;) <05 (16.6)
Yj =
~In(2(1-P(X))) P(X;) =05
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The Heffernan & Tawn (2004) conditional distribution for a set of variables with
Laplace margins simplifies into one function for both positive and negative
dependence (Keef, Papastathopoulos, & Tawn, 2013):

(YjelY; = y) = ajy + y"iW;
JJ¢=1.2,j #j

(16.7)

with the random variable, Y;c, being conditioned on the random variable, Y;. We
use notation Y to indicate that these variables have Laplace margins. W is a
random variable from an unknown distribution. We introduce the additional
parameters, m and s and assume that Z; = (W; — m;)/s; follows a common

distribution independent of covariates. Hence Eg. (16.7) may be written as:
(YelY =) = ay + y"i (m; + 5;Z)),
JJC=12j#]

(16.8)

The negative log-likelihood for pairs of the sample {y;;, y;»} is given by:

1]

2
b .
. (yijc - (ajyi,- +m;y; 1))
lep i = Ins;y” d
CEj = ns;y;;’ + B2
x> (0upid; ) 2 (Sjyij )

J¢=12,j#]

(16.9)

ucg,j is the threshold with non-exceedance probability, 4;, adopted for the
conditional extremes model, meaning that the model is fitted to pairs of
variables for which the non-exceedance probability of the conditioning variable
exceeds ;. This threshold is set independently of the Generalized Pareto
threshold u,, and may be lower than that since the distribution below the GP
threshold u, is defined by the gamma distribution.

Conditional extremes model threshold uncertainty is included by sampling 4;
from a uniform distribution over a pre-set quantile interval followed by
ensemble averaging results over several different values of 4;.

Residuals, r, are calculated from the estimated model parameters as:
1 R 5,
Tij =% (Yijc - ajyij)yij —m; (16.10)
J

Multidimensional dependencies are modelled through the residuals. For each
parameter, j = 2, ...,n, with n being the total number of variables modelled, the
residual is calculated for each event i leading to a vector of residuals for each
eventr; = [1;y, ..., ip]l. These n vectors of residuals are later used for
simulating data in the model.

It then follows that the Laplace marginal value of parameter j conditioned on
parameter 1 is given by

(YJ-|Y1 = y) =a;y+ ybf(mj + sjrj) (16.11)

The probability transform in Eq. (16.6) is inversed to get the non-exceedance
probabilities of the associated parameters. The magnitude of each associated
parameter is then calculated from its marginal distribution.
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16.5 Covariates

Penalised B-splines are used to model the parameter variation with covariate.
The basic idea of penalised B-splines, originally introduced by Eilers & Marx
(1996), is to use B-splines with a moderately large number of evenly-spaced
knots and control the parameter smoothness by a variance penalty factor, 72.

B-spline regression is started by dividing the domain over which to fit a curve
into n’ equal intervals by specifying the position of n' + 1 knots. B(asis)-splines
are then constructed as sequences of polynomial functions of degree, g,
connected the knots. Each B-spline is positive in a range spanning q + 2
knots, and zero elsewhere. Curve-fitting using B-splines consists in finding the
coefficients, B;-1.n/44, With which to multiply the B-splines. The function value
may be expressed as the linear combination of the spline basis, B, and the
coefficients.

n'+q

= ) BiBi) (16.12)
i=1

Penalised B-splines (P-splines) are an extension of B-splines in which a
penalty is put on the differences between adjacent g-coefficients. The degree
of roughness is controlled by a variance parameter, 72, and the difference
penalty matrix, K. For first order differences, the difference matrix is given by:

1 -1
K= (16.13)

-1 1
The basis of B-splines and the effect of roughness penalty, introduced through
72, is illustrated in Figure 16.1.

Both directional and seasonal variations are periodic. Periodic smoothing is
introduced by ‘wrapping’ the spline at the ends. Specifically, the last g basis
splines are merged with the first g splines and the total number of basis
functions reduced by q. The difference penalty matrix is wrapped similarly, i.e.,
K is now:

2 -1 =1
-1 2 -1
L (16.14)
-1 2 -1
-1 -1 2

B-splines are extendable to higher dimensions through tensor-product B-
splines (see e.g.[48]). The multidimensional surface is now described by
tensor-products of B-splines. The tensor-product B-splines in two dimensions
are illustrated in Figure 16.2. The coloured shapes underlying the surface are
the individual tensor-product B-splines scaled by the respective coefficients.
The total number of B-coefficients to estimate is now (ng + q) X (n;, +q).
Different number of knots and different penalty factors may apply for each
dimension. However, as Figure 16.2 also illustrates, large roughness penalty in
one dimension may influence the smoothness in other dimensions. This
indicates that roughness penalty should be determined for all dimensions
simultaneously.
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Figure 16.1 Quantile regression analysis for some fictive seasonally
varying parameter, illustrating the components of P-splines
The coloured curves show the individual B-splines each multiplied by
its respective b-coefficient. Quadratic B-splines (q=2) and first order
penalty have been used.
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Figure 16.2 Quantile regression analysis, illustrating the components of
tensor-product P-splines in two dimensions.
The coloured surfaces show the individual tensor-product B-splines
each multiplied by its respective g -coefficient. Quadratic B-splines
(g = 2) and first order penalty have been used.

Generalised linear array models

The penalised B-spline approach outlined above requires evaluation x = Bf,
where B is a (sparse) m x n matrix where m is the total number of data points
irregularly spaced within the covariate domain, and n the total number of knots
n =n, Xn,. Bisan x 1 vector of spline coefficients.

However, if we can organise our irregularly spaced data onto a regular
m, X m, grid, we may reduce the problem size substantially using Generalized

Linear Array Models (GLAM) ([49],[50]) These provide a computationally and
memory-efficient framework for combining tensor product B-splines with array

data and have been used in a very similar application in the past ([47])
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In fact, the problem now reduces to evaluation of ByM (B)B3, where M (B) is a
n, X n, reordering of B. B; and B, are size m; X n; and m, X n, respectively.

16.6 Parameter estimation

Distribution parameters for the model components described in Section 16.1
are defined by the B spline coefficients and parameter estimations thus
consists in estimating the appropriate values of B.

A Bayesian approach is applied to estimate the g-coefficients. The approach
builds on work in[51], [52] and [53]

Priors
Spline Model
The prior for g up to a constant of proportionality is given by, [53]
1 1
BI?) o« —eexp (—5 5 B7KE) (16.15)
(r2) 2

where rk(K) is the rank of the penalty matrix, K.

The variance parameter 72 is estimated through 10-fold cross-validation.
Cross-validation is a robust and simple technique to optimise the predictive
performance of a model, i.e., its capability of predicting the likelihood of a data
sample that was not used to estimate the model. In this way the right
complexity of the model is achieved — it is neither too simple nor is it over-fitting
to the data. In this case, too simple a model would be too smooth and thereby
ignore covariate effects that were truly present while a too complicated model
would be exaggerating covariate effects by trying to adopt to the individual
extreme events.

The 10-fold cross-validation consists in, for a given choice of 72, to fit the
model to 90% of the data (training) and then calculate the likelihood of the
remaining 10% of the data(validation). This is repeated 10 times such that all
data points have been used one time for validation and the 10 likelihoods are
then summed. This whole procedure is then repeated for a new choice of 72.
Estimation of all values of 72 at once is not feasible as the model has as many
values of 72 as the number of model parameters times the number of
covariates. Instead, a sequential procedure has been adopted:

1. Values of 72 for the I'-distribution are estimated by:

- Estimate an appropriate global value by varying all 72 at the same
time

- Estimate a ratio between the shape a and mean u by varying
these separately (but using same value for season and direction)

- Estimate the ratio between season ¢ and direction 8, using the
relative ratio between a and u as above

- Repeat first sub-step but now using the relative ratios between a,
U, ¢ and 6.

2. The T'-distribution is now fitted using the most appropriate combination of
72 estimated above and together with appropriate quantile thresholds x4, k,
this provides the non-stationary threshold above which the GP tail is
assumed. For each GP tall, the steps a-d are followed though now with the
ratio of GP shape ¢ to scale ¢ estimated under second sub-step above.
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Figure 16.3 show an example of the results of a cross-validation, in this case
for the upper tail of the Hp, ,, .4 variable. The rows in the plot show results of
cross-validation steps a to d. Upper and lower subplots show the summed log-
likelihood score on the 10 validation sets as against the prescribed value of 72.
Row 2 and 3 show colour-scaled plots of the summed log-likelihood score for
the tested combinations of 72 (along x-axis) and r§ (along y-axis). Yellow
indicates higher cross-validation score (better predictive performance). The
right-hand plots show the same results as the left-hand plots but smoothing the
results across neighbouring T2 combinations. Results in left hand plots are
normally used. The black dots show random combinations sampled from the
probability distribution that can be constructed from the summed log-likelihood
score. The black crosses indicate the optimum point.
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Figure 16.3 Example of cross-validation for the upper GP tail of the
distribution of Hypgpeq-

See explanation in text for details
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Marginal Distributions

In addition to the priors on the spline coefficients B, we may also specify priors
for the values of the actual distribution parameters or the support ranges. In the
case of a negative GP shape parameter, the support range for the GP
distribution has an upper end-point X,,,,, given by (see Section 16.2 for
definition of parameters)

Xonax = — g +u (16.16)
The distribution tail will asymptotically approach this limit. If a physical absolute
upper limit of a parameter is known, it may be introduced in the extreme value
analysis by setting the upper end-point of the GP support range to be this limit.

Proposal generation

The posterior distributions are approximated using Markov Chain Monte Carlo
methods with a Metropolis-Hastings (MH) sampling scheme. The MH scheme
progresses as follows (for one model component):

1. Define start values'®, B(© Set iteration number i = 1.

2. For each model parameter; Propose candidate coefficients, g* from a
multivariate normal distribution MVN(B%=1,S). Two approaches are
followed to estimate the covariance matrix S

- Following the approach of Rue ([54])also adopted by Lang and
Brezger (/13/), proposals are drawn from a MVN with covariance

-1
matrix § = (BTB + T%K)
- Following Roberts and Rosenthal ([53])the empirical covariance

matrix is estimated, and proposals drawn from a MVN with
covariance matrix

X I
S=(1-€)°238°— +e*x 0.013‘z (16.17)
where X, is the empirical covariance matrix of size d x d estimated
from the markov chain. The latter term 0.01/,/d is random noise and
the small constant e is used to control the degree of random noise in

the proposal. Roberts and Rosenthal use € = 0.05 and we adopt the
same value here.

The latter approach requires an estimate of the covariance matrix, which
can only be obtained from running the MCMC. Hence, approach a. is first
run for a large number of iterations. As approach b. turns out to be
computationally faster, the MCMC algorithm has been set to switch to this
approach after a number of iterations. Multivariate normal random samples
are generated from a Cholesky decomposition L of the covariance matrix S.
Hence

Br=p4V+Lxu (16.18)
where u is a vector of standard normal random (uncorrelated) samples.

3. Accept B* with probability:

10 Start values for spline coefficients are made by fitting constant models through
(seasonally-directionally) binned data, followed by fitting a smoothing spline
through the estimated parameter values
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‘A(B(i_l):ﬁ*)
_ i [y L@B)R(B 1) () Y) (16.19)
~ U IR (EED D)) D)
4. Steps 2-3 are repeated for each model parameter after which the iteration
counter i is incremented by one

Full model inference

The procedure detailed above is valid for one single model component (gamma
distribution bulk, GP tail, Conditional extremes model). However, the full model
requires estimation of all components in a hierarchical order as follows:

Parameter 1: Gamma distribution bulk — GP tails

Parameter 2: Gamma distribution bulk — GP tails
—Conditional Extremes Model

Parameter n: Gamma distribution bulk — GP tails
This is achieved as follows:

1. For each input variable (e.g., Hpg, Ty, ..., €1C);

- Fit the gamma distribution to all events and save several
independent samples from the chain. Also fit the rate of
occurrence model for the primary parameters of interest that are
later used as conditioning parameters.

- At each stored sample of the gamma distribution of bulk data,
sample a threshold non-exceedance probability, compute the
threshold, run a GP chain, and save an appropriate number of
samples of this after burn-in. Both high and low tail are estimated
independently in this way.

This procedure results in n samples (n = number of Gamma samples times
number of GP samples) of each marginal distribution.

2. Fit all conditional extremes models to the marginal distribution samples.
The CE models are fitted simultaneously in order to achieve vectors of
residuals emanating from the same historical events, whereby
multidimensional dependencies can be carried over into storm simulations
(see also Section 16.4). The conditional extremes model threshold ¥
uncertainty is accounted for by updating the threshold non-exceedance
probability A for each update of the GP tail threshold in the marginal
models. The iteration procedure for each A update is as follows:

- Sample a threshold non-exceedance probability and identify the
events above this in the conditioning distribution.

- Fit the CE model across all GP tail updates and to each variable in
turn. The CE chain is run for several iterations for each GP tail
update, but only the last iteration is stored. Also, the residuals are
stored for the last iteration. By running this procedure over all
variables in turn, a matrix of residuals is built for each stored CE
iteration with size number of threshold exceeding events times
number of variables.

The above procedure results in an equal number of samples of the marginal
and conditional models, the latter with associated residuals. Several thresholds
in both marginal tails and conditional extremes are incorporated in this sample,
thus accounting for some of the threshold uncertainty. Equal weight is thereby
given to all possible thresholds within the assumed plausible range. It is our
experience with constant models that this is a reasonably good approximation
for most data sets and superior to a constant threshold approach.
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Proper implementation of the MCMC approach ensures that the final sample of
model parameters thus obtained represents a sample from the posterior
distribution of the model parameters. The uncertainty related to the
extrapolation from a limited input data sample to events with a very low
exceedance probability is reflected in this posterior distribution.

An overview of the different distribution parameters to be determined for each
marginal and conditional extremes distribution is given in Table 16.1. The
threshold quantiles are specified as constants and do therefore not vary with
covariates. This means that a certain threshold for example for a GP tail model
is taken as a constant (across covariate space) quantile in the underlying
Gamma distribution. But as the Gamma distribution itself is non-stationary with
respect to covariates, the actual threshold for the GP model will also vary with
covariates. The quantiles are sampled uniformly from specified intervals.

Table 16.1  Overview of model parameters

Description | Symbol | Typel? |
Rate of occurrence p Tensor-Product B-spline
T distribution shape a Tensor-Product B-spline
[ distribution mean u Tensor-Product B-spline
GP low tail threshold quantile Ky Constant

GP low tail shape parameter & Tensor-Product B-spline
GP low tail scale parameters 0 Tensor-Product B-spline
GP high tail threshold quantile Ky Constant

GP high tail shape parameter & Tensor-Product B-spline
GP high tail scale parameters '€ Tensor-Product B-spline
CE threshold quantile A Constant

CE a parameter a Tensor-Product B-spline
CE b parameter b Tensor-Product B-spline
CE mean parameter m Tensor-Product B-spline
CE standard deviation parameter s Tensor-Product B-spline

16.7 Simulation and return value estimation

Due to the complexity of the model and the need to ensemble average over the
posterior distribution sample of the model parameters, return values are
obtained by simulating events in the model. Popular speaking, such a
simulation consists in sampling a very large number of events whereby the
sought return value can be ‘read off’ as the i'th largest event in the simulated
sample. The rank i depends on the simulation length (numbers of years
simulated) and the return period in question.

Combined with an appropriate event (storm) model this procedure also allows
for swift convolution of the long-term distribution of the slowly varying
parameters with a short-term distribution of a certain type of response. The

11 In the case of a constant (covariate-free) model, all parameters are constant.
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classical example in this respect is the convolution of the long-term distribution
of sea states with the short-term distribution of maximum wave crest heights to
obtain the long-term distribution of the maximum crest elevation.

The simulation procedure followed to simulate one year of events is detailed
below.

1. Sample a particular iteration from the MCMC chain

2. Sample the number of events from a Poisson distribution with arrival rate
corresponding to the average annual number of events in the input data set

Sample non-exceedance probability for all events

4. For a non-stationary model, assign covariates to each event through the
fitted non-stationary rate function for the conditioning variable

5. Calculate the magnitude of the conditioning variable for all events from its
marginal non-stationary distribution

6. Resample events from the data set for all events with non-exceedance
probability below the conditional extreme model quantile threshold \lambda
as the conditional extremes model is only applicable for conditioning events
with non-exceedance probability above A. In practice, the resampling is
done by searching for the nearest event in the data set in terms of all
covariates and magnitude

7. Magnitudes of conditioned parameters 1,, ..., n, above the conditional
extreme model quantile threshold A are modelled through the conditional
extremes model. A vector of residuals r; = [r;3, ..., ;] €manating from the
same event in the data set is sampled for each event from the stored
residuals for the particular MCMC iteration. The Laplace marginal values
for all conditioned parameters calculated from eq. (16.11) and the marginal
distributions applied to convert the Laplace marginal values to the physical
values.

Return values with long recurrence period requires many years to be
simulated. Denoting the number of years n and the required return period T,
reasonably converged estimates of return values are obtained when n = 100T,.
In other words, a 100-year return value requires simulation of around 10,000
years.

Return values are usually reported as quantiles in the distribution of the annual
maximum. The annual maximum distribution is constructed from the simulation
by only retaining the largest simulated value per year and the relationship
between quantile and return period given by:

qr = exp (— l) (16.20)
T,
The return values hereby obtained reflect the uncertainty in the extreme value
distributions and larger uncertainty will inflate the return values especially for
return periods longer than the duration of the historical input data sample. This
is achieved by integrating across the posterior distribution of the model
parameters (effectively achieved by sampling amongst the MCMC iterations
when simulating events in step 1). This type of distribution is also known as the
posterior predictive annual maximum distribution.

Conditional distributions of associated parameters are readily obtained from
the simulation of conditioned parameters.
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