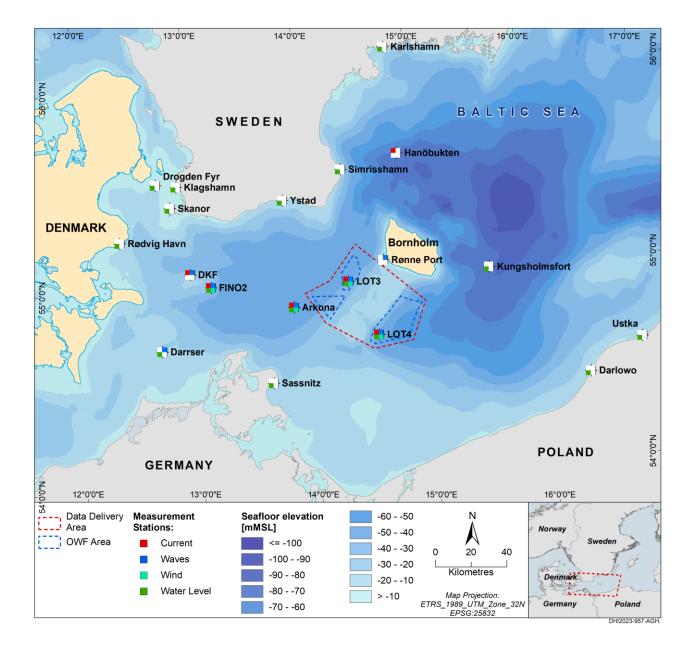


# **Energy Island Baltic Sea**


## **Metocean Assessment**

Part C: Data Basis Reverification

#### Note IO Number 4500092960

2024-07-04

Prepared for Energinet Eltransmission A/S





Energy Island Baltic Sea

Metocean Assessment Part C: Data Basis Reverification

Note IO Number 4500092960

Prepared for:Energinet Eltransmission A/SRepresented byMr Kim Parsberg Jakobsen

Morten Rugbjerg, <u>mnr@dhigroup.com</u>, +45 45 16 94 18 Morten Rugbjerg Jacob Berg Jørgensen Arief Rullyanto, Ole Svenstrup Petersen Contact person: Project Manager: Quality Supervisor: Author: Project No.: 11829021 Approved by: Jacob Berg Jørgensen 2024-07-04 Approval date: Revision: Final 1.0 Classification Confidential 11829021\_DHI\_EIBS\_Metocean\_Part\_C\_Data\_Basis\_Reverification.docx File name:



## Contents

| Exec | cutive Summary                        |    |
|------|---------------------------------------|----|
| 1    | Introduction                          | 9  |
| 2    | Overview of Additional Measurements   |    |
| 3    | Wind Revalidation                     |    |
| 4    | Wave Revalidation                     |    |
| 5    | Water Level Revalidation              |    |
| 6    | Current Revalidation                  |    |
| 7    | Temperature and Salinity Revalidation |    |
| 8    | References                            | 41 |

# Figures

| Figure 2.1  | Coverage period of measurement campaign of LOT3 and LOT4               | 10 |
|-------------|------------------------------------------------------------------------|----|
| Figure 3.1  | Comparison of measured and modelled wind speed at LOT4                 | 14 |
| Figure 3.2  | Comparison of measured and modelled wind rose at LOT4                  | 15 |
| Figure 4.1  | Comparison of measured and modelled H <sub>m0</sub> at LOT4            | 19 |
| Figure 4.2  | Comparison of measured and modelled wave rose at LOT4                  | 20 |
| Figure 4.3  | Comparison of measured and modelled T <sub>p</sub> at LOT4             | 21 |
| Figure 4.4  | Comparison of measured and modelled T <sub>01</sub> at LOT4            | 22 |
| Figure 4.5  | Comparison of measured and modelled T <sub>02</sub> at LOT4            | 23 |
| Figure 5.1  | Comparison of measured and modelled water level at LOT4                | 25 |
| Figure 6.1  | Comparison of measured and modelled current speed at LOT3, 10 m depth  | 28 |
| Figure 6.2  | Comparison of measured and modelled current rose at LOT3, 10 m depth   | 29 |
| Figure 6.3  | Comparison of measured and modelled current speed at LOT3, 32 m depth  | 30 |
| Figure 6.4  | Comparison of measured and modelled current rose at LOT3, 32 m depth   | 31 |
| Figure 6.5  | Comparison of measured and modelled current speed at LOT4, 10 m depth  | 32 |
| Figure 6.6  | Comparison of measured and modelled current rose at LOT4, 10 m depth   | 33 |
| Figure 6.7  | Comparison of measured and modelled current speed at LOT4, 32 m depth  | 34 |
| Figure 6.8  | Comparison of measured and modelled current rose at LOT4, 32 m depth   | 35 |
| Figure 6.9  | Modelled currents at -10 m depth                                       | 36 |
| Figure 6.10 | Modelled currents at -30 m depth (with Rønne Banke shown in grey)      | 36 |
| Figure 7.1  | Comparison of measured and modelled water temperature at LOT4, surface | 38 |
| Figure 7.2  | Comparison of measured and modelled water temperature at LOT4          | 39 |
| Figure 7.3  | Comparison of measured and modelled salinity at LOT4, 25 m depth       | 40 |



## Tables

| Table 2.1 | Details of additional wind measurement                                        | 11 |
|-----------|-------------------------------------------------------------------------------|----|
| Table 2.2 | Details of additional wave measurement                                        |    |
| Table 2.3 | Details of additional water level measurements                                |    |
| Table 2.4 | Details of additional current measurements                                    |    |
| Table 2.5 | Details of additional temperature and salinity measurements                   | 12 |
| Table 3.1 | Statistics of wind validation (wind speed)                                    |    |
| Table 4.1 | Statistics of wave validation (H <sub>m0</sub> )                              |    |
| Table 4.2 | Statistics of wave validation ( $T_{p}$ , for $H_{m0} > 0.5 \text{ m}$ )      |    |
| Table 4.3 | Statistics of wave validation (T <sub>01</sub> , for H <sub>m0</sub> > 0.5 m) | 17 |
| Table 4.4 | Statistics of wave validation (T <sub>02</sub> , for H <sub>m0</sub> > 0.5 m) |    |
| Table 5.1 | Statistics of water level validation                                          |    |
| Table 6.1 | Statistics of current validation at -10m depth                                |    |
| Table 6.2 | Statistics of current validation at -32m depth                                |    |
| Table 6.3 | Post-calibration scaling factors for current speeds (from [2])                |    |



## Nomenclature

| Variable                       | Abbreviation        | Unit                |
|--------------------------------|---------------------|---------------------|
| Atmosphere                     |                     |                     |
| Wind speed @ 10 m height       | WS <sub>10</sub>    | m/s                 |
| Wind direction @ 10 m height   | WD <sub>10</sub>    | °N (clockwise from) |
| Air pressure @ mean sea level  | P <sub>MSL</sub>    | hPa                 |
| Air temperature @ 2 m height   | T <sub>air,2m</sub> | °C                  |
| Relative humidity @ 2 m height | RH <sub>2m</sub>    | -                   |
| Ocean                          |                     |                     |
| Water level                    | WL                  | mMSL                |
| Current speed                  | cs                  | m/s                 |
| Current direction              | CD                  | °N (clockwise to)   |
| Water temperature              | T <sub>sea</sub>    | °C                  |
| Water Salinity                 | Salinity            | PSU                 |
| Waves                          |                     |                     |
| Significant wave height        | H <sub>m0</sub>     | m                   |
| Peak wave period               | T <sub>p</sub>      | S                   |
| Mean wave period               | T <sub>01</sub>     | S                   |
| Zero-crossing wave period      | T <sub>02</sub>     | S                   |
| Peak wave direction            | PWD                 | °N (clockwise from) |
| Mean wave direction            | MWD                 | °N (clockwise from) |
| Direction standard deviation   | DSD                 | 0                   |

| Definitions       |                                                |  |  |  |  |
|-------------------|------------------------------------------------|--|--|--|--|
| Coordinate System | WGS84 EPSG 4326 (unless specified differently) |  |  |  |  |
| Direction         | Clockwise from North                           |  |  |  |  |
|                   | Wind: °N coming from                           |  |  |  |  |
|                   | Current: °N going to                           |  |  |  |  |
|                   | Waves: °N coming from                          |  |  |  |  |
| Time              | Times are relative to UTC                      |  |  |  |  |
| Vertical Datum    | MSL (unless specified differently)             |  |  |  |  |



| Abbreviations |                                                    |
|---------------|----------------------------------------------------|
| 2D            | 2-dimensional                                      |
| 3D            | 3-dimensional                                      |
| ADCP          | Acoustic Doppler Current Profiler                  |
| AME           | Mean Absolute difference                           |
| СС            | Cross Correlation                                  |
| DEA           | Danish Energy Agency                               |
| DNV           | Det Norske Veritas                                 |
| DNVGL         | Det Norske Veritas Germanischer Lloyd              |
| ECMWF         | European Centre for Medium-Range Weather Forecasts |
| EIBS          | Energy Island Baltic Sea                           |
| ERA5          | ECMWF Re-analysis v5                               |
| EV            | Explained variance                                 |
| FEED          | Front-End Engineering Design                       |
| HD            | Hydrodynamic                                       |
| IEC           | International Electrotechnical Commission          |
| ISO           | International Organization for Standardization     |
| mMSL          | Metres above Mean Sea Level                        |
| MSL           | Mean Sea Level                                     |
| NORA3         | 3 km NOrwegian ReAnalysis atmospheric dataset      |
| OWF           | Offshore Wind Farm                                 |
| PR            | Peak to Peak Ratio                                 |
| PSU           | Practical Salinity Unit                            |
| QQ            | Quantile-quantile                                  |
| RMSE          | Root-mean-square difference                        |
| SI            | Scatter Index                                      |
| SW            | Spectral Wave                                      |
| UTC           | Coordinated Universal Time                         |
| WGS84         | World Geodetic System 1984                         |



## Revision

| Version   | Date         | Revision log                                 |
|-----------|--------------|----------------------------------------------|
| Draft 0.1 | 13 June 2024 | Draft version for client review              |
| Final 1.0 | 4 July 2024  | Final version including comments from client |



## **Executive Summary**

Energinet Eltransmission A/S (Energinet) commissioned DHI A/S (DHI) to carry out a metocean study that shall serve as a basis for Front-End Engineering and Design (FEED) of two offshore wind farms named Bornholm I and Bornholm II, being part of Energy Island Baltic Sea (EIBS). The offshore wind farms will be located southwest of the island Bornholm in the Baltic Sea.

The results of the metocean study consist of three reports: a metocean data basis report (Part A), a metocean data analysis report (Part B), and a hindcast revalidation note (this note). Additionally, a metocean hindcast database is provided.

In this revalidation note, measurements unavailable to the metocean study for Part A and Part B are compared to the models used as the basis for Part A and Part B. The purpose of this note is thus to check if these new measurements will change the design conditions presented in Part B.

The note provides a revalidation of the following parameters: wind, wave, current, water level, seawater temperature and salinity.

The conclusion is that the revalidation of all the parameters mentioned does not change any of the conclusions made in the Part A report [1] nor any of the design conditions presented in the Part B report [2].

It should be noted that both reports (the Part A report and the Part B report) have been certified (see [3] and [4]), as have the metocean measurements collected and used for this study (see [5]).



## **1** Introduction

This study provides detailed metocean conditions to use in the Front-End Engineering and Design (FEED) of two offshore wind farms named Bornholm I and Bornholm II, being part of Energy Island Baltic Sea (EIBS). The offshore wind farms are to be located southwest of the island Bornholm in the Baltic Sea. The study consists of three reports: a metocean data basis (Part A) [1], a metocean data analysis (Part B) [2], and a hindcast revalidation note, which is the present note. Additionally, a metocean hindcast database is provided.

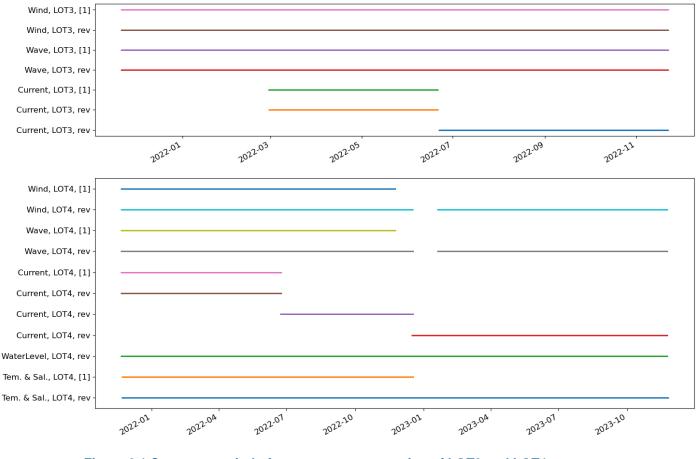
Energinet Eltransmission A/S (Energinet) was instructed by the Danish Energy Agency (DEA) to initiate site investigations, including a metocean assessment, for offshore wind farms in an area to the southwest of Bornholm in the Baltic Sea. Following this, Energinet commissioned DHI A/S (DHI) to provide a detailed metocean site condition assessment for use in FEED as described in "CONSULTANCY CONTRACT REGARDING SITE METOCEAN CONDITIONS ASSESSMENT FOR OFFSHORE WIND FARMS – BALTIC SEA" signed on 7 March 2023.

The study consists of several deliverables:

- Part A: Description and Verification of Data Basis (report) [1], that has been certified [3]
- Part B: Data Analyses and Results (report) [2], that has been certified [4]
- Long-term hindcast data (digital time series)
- Measurement data (digital time series)
- Part C: Data Basis Reverification (this note)

The study refers to the following standard practices and guidelines:

- DNV-RP-C205 [6]
- IEC 61400-3-1 [7]


The metocean measurements used for this study has also been certified [5].



## **2** Overview of Additional Measurements

This section describes the additional measurements campaign, which includes wind, wave, water level and current measurements.

The coverage of the data received for the revalidation note and the data used in report [1] is presented in Figure 2.1. Based on the temporal coverage presented in Figure 2.1, the revalidation was carried out for new wind, wave, current, water level, temperature, and salinity at LOT4, and current at LOT3 not previously received. Further details on the data used for the revalidation are available in Table 2.1 to Table 2.5.







| Station<br>Name | Longitude<br>[°E] | Latitude<br>[°N] | Measurement Height<br>[mMSL]                                                      | Data<br>coverage<br>(new period) | Data<br>coverage<br>(full period) | Instrument                                                | Owner /<br>Surveyor  |
|-----------------|-------------------|------------------|-----------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------------------------------|----------------------|
| LOT4            | 14.5882           | 54.7170          | 4 (Anemometer)<br>30, 40, 60, 90, 100,<br>120, 150, 180, 200,<br>240, 270 (LiDAR) | 2022-11-24 –<br>2023-11-22       | 2021-11-21 –<br>2023-11-22        | Anemometer:<br>Gill Windsonic M<br>LiDAR: ZephIR<br>ZX300 | Energinet /<br>Fugro |

#### Table 2.1 Details of additional wind measurement

#### Table 2.2 Details of additional wave measurement

| Station | Longitude | Latitude | Depth  | Data coverage              | Data coverage              | Instrument  | Owner /              |
|---------|-----------|----------|--------|----------------------------|----------------------------|-------------|----------------------|
| Name    | [°E]      | [°N]     | [mMSL] | (new period)               | (full period)              |             | Surveyor             |
| LOT4    | 14.5882   | 54.7170  | 42.3   | 2022-11-21 –<br>2023-11-22 | 2021-11-22 –<br>2023-11-22 | Wavesense 3 | Energinet /<br>Fugro |

#### Table 2.3 Details of additional water level measurements

| Station<br>Name | Longitude<br>[°E] | Latitude<br>[°N] | Depth<br>[mMSL] | Data<br>coverage<br>(new period) | Data<br>coverage<br>(full period) | Instrument              | Owner /<br>Surveyor  |
|-----------------|-------------------|------------------|-----------------|----------------------------------|-----------------------------------|-------------------------|----------------------|
| LOT4            | 14.5882           | 54.7170          | 42.3            | 2022-12-01 –<br>2023-11-22       | 2021-11-22 –<br>2023-11-22        | Nortek Signature<br>500 | Energinet /<br>Fugro |

#### Table 2.4Details of additional current measurements

| Station<br>Name | Longitude<br>[°E] | Latitude<br>[°N] | Depth<br>[mMSL] | Data coverage<br>(new period) | Data coverage<br>(full period) | Levels                                                | Instrument              | Owner /<br>Surveyor  |
|-----------------|-------------------|------------------|-----------------|-------------------------------|--------------------------------|-------------------------------------------------------|-------------------------|----------------------|
| LOT3            |                   | 54.9948          | 39.8            |                               | 2022-02-28 –<br>2022-06-20     | 1 m intervals in<br>range 4 m to 37 m<br>above seabed | Nortek<br>Signature 500 | Energinet<br>/ Fugro |
|                 | 14.3556           |                  |                 | 2022-06-22 –<br>2022-11-21    | 2022-06-22 –<br>2022-11-21     | 2 m intervals in<br>range 4 m to 34 m<br>above seabed |                         |                      |
| LOT4            | 14.5882           | .5882 54.7170    | 54.7170 42.3    |                               | 2021-11-22 –<br>2022-06-22     | 1 m intervals in<br>range 4 m to 39 m<br>above seabed | Nortek<br>Signature 500 | Energinet<br>/ Fugro |
|                 |                   |                  |                 | 2022-06-24 –<br>2022-12-16    | 2022-06-24 –<br>2022-12-16     | 2 m intervals in<br>range 4 m to 36 m<br>above seabed |                         |                      |
|                 |                   |                  |                 | 2022-12-17 –<br>2023-11-22    | 2022-12-17 –<br>2023-11-22     | 1 m intervals in<br>range 4 m to 39 m<br>above seabed |                         |                      |



| Station<br>Name | Longitude<br>[°E] | Latitude<br>[°N] | Depth<br>[mMSL] | Data coverage<br>(new period) | Data coverage<br>(full period) | Levels                                                      | Instrument           | Owner /<br>Surveyor  |
|-----------------|-------------------|------------------|-----------------|-------------------------------|--------------------------------|-------------------------------------------------------------|----------------------|----------------------|
| LOT4            | 14.5882           | 54.7170          | 42.3            | 2022-11-24 –<br>2023-11-22    | 2021-11-22 –<br>2023-11-22     | Temperature and<br>salinity at 9 m, 18<br>m, 25 m, and 33 m | Seabird STB<br>CTD   | Energinet<br>/ Fugro |
| LOT4            | 14.5882           | 54.7170          | 42.3            | 2022-11-24 –<br>2023-11-22    | 2021-11-22 –<br>2023-11-22     | Surface<br>temperature                                      | LiDAR buoy<br>(SWLB) | Energinet<br>/ Fugro |



## **3 Wind Revalidation**

This section summarises the modelled versus the measured wind speed and direction. Modelled wind parameters are based on the NORA3 model (Section 3.3.1 of [1]) with coverage extended to November 22, 2023 (end of measurement campaign).

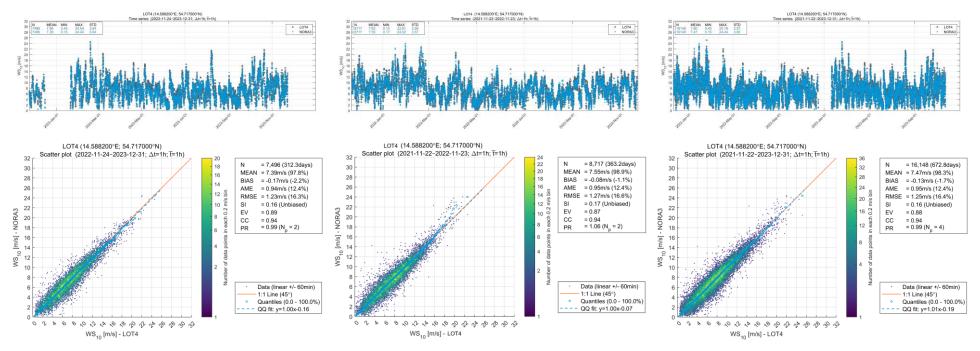

Figure 3.1 compares the time series and scatter plots of wind speed during the new campaign period, the old campaign period, and the full coverage of the campaign period. The wind rose comparison is presented in Figure 3.2.

Table 3.1 provides the validation statistics of the new and full campaign periods. The validation during the new campaign period is consistent with the previous validation [1], regarding both magnitude and direction. It can be summarized that the NORA3 wind has a high correlation with local measurements. Thus, no further adjustment is needed for the wind-related sections in [1] and [2].

|        | LOT4         | LOT4          |
|--------|--------------|---------------|
|        | (new period) | (full period) |
| N      | 7496         | 16148         |
| MEAN   | 7.39         | 7.47          |
| BIAS   | -0.17        | -0.13         |
| AME    | 0.94         | 0.95          |
| RMSE   | 1.23         | 1.25          |
| SI     | 0.16         | 0.16          |
| EV     | 0.89         | 0.88          |
| СС     | 0.94         | 0.94          |
| PR     | 0.99         | 0.99          |
| QQ fit | 1.00x-0.16   | 1.01x-0.19    |

#### Table 3.1 Statistics of wind validation (wind speed)





#### Figure 3.1 Comparison of measured and modelled wind speed at LOT4

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.



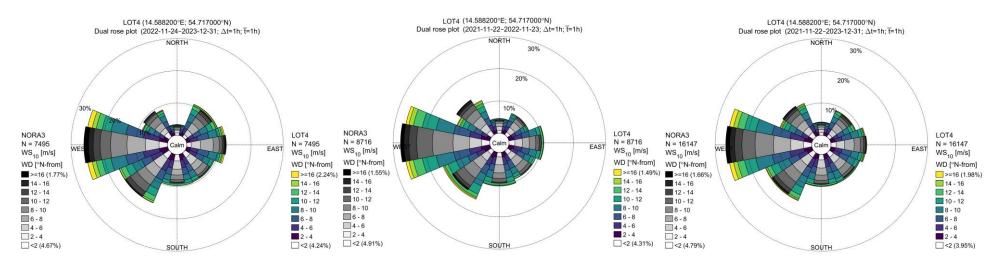



Figure 3.2 Comparison of measured and modelled wind rose at LOT4 Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".



## **4 Wave Revalidation**

This section summarises the modelled versus the measured wave parameters ( $H_{m0}$ ,  $T_p$ ,  $T_{01}$ ,  $T_{02}$ , MWD). Modelled wave parameters are based on the SW<sub>EIBS</sub> model (Section 6.6 of [1]) with coverage extended to November 22, 2023 (end of measurement campaign).

Figure 4.1, Figure 4.3, Figure 4.4, and Figure 4.5 show the comparison of the time series and scatter plots of wave parameters ( $H_{m0}$ ,  $T_p$ ,  $T_{01}$ ,  $T_{02}$ , respectively) during the new campaign period, old campaign period, and the full coverage of the campaign period. The wave rose comparison is presented in Figure 4.2.

Table 4.1 to Table 4.4 provide the validation statistics for the new and full campaign periods. The validation during the new campaign period is consistent with the previous validation [1], regarding both magnitude and direction. In summary, the SW<sub>EIBS</sub> model also agrees well with the local measurements for the new period. Thus, no further adjustment is needed for the wave-related sections in [1] and [2].

|        | LOT4<br>(new period) | LOT4<br>(full period) |
|--------|----------------------|-----------------------|
| N      | 7871                 | 16548                 |
| MEAN   | 0.93                 | 0.94                  |
| BIAS   | 0.04                 | 0.04                  |
| AME    | 0.11                 | 0.11                  |
| RMSE   | 0.16                 | 0.15                  |
| SI     | 0.17                 | 0.16                  |
| EV     | 0.95                 | 0.95                  |
| СС     | 0.98                 | 0.98                  |
| PR     | 0.98                 | 0.98                  |
| QQ fit | 1.02+0.02            | 1.04+0.00             |

#### Table 4.1 Statistics of wave validation (H<sub>m0</sub>)



|        | LOT4<br>(new period) | LOT4<br>(full period) |
|--------|----------------------|-----------------------|
| N      | 5005                 | 10860                 |
| MEAN   | 5.26                 | 5.23                  |
| BIAS   | 0.12                 | 0.11                  |
| AME    | 0.36                 | 0.35                  |
| RMSE   | 0.59                 | 0.57                  |
| SI     | 0.11                 | 0.11                  |
| EV     | 0.77                 | 0.75                  |
| сс     | 0.89                 | 0.88                  |
| PR     | 1.05                 | 1.08                  |
| QQ fit | 1.04-0.08            | 1.04-0.08             |

Table 4.2 Statistics of wave validation ( $T_{p,}$  for  $H_{m0} > 0.5 m$ )

#### Table 4.3

## Statistics of wave validation ( $T_{01}$ , for $H_{m0} > 0.5$ m)

|        | LOT4<br>(new period) | LOT4<br>(full period) |  |
|--------|----------------------|-----------------------|--|
| N      | 5005                 | 10860                 |  |
| MEAN   | 4.41                 | 4.39                  |  |
| BIAS   | 0.19                 | 0.18                  |  |
| AME    | 0.25                 | 0.24                  |  |
| RMSE   | 0.31                 | 0.30                  |  |
| SI     | 0.06                 | 0.06                  |  |
| EV     | 0.89                 | 0.89                  |  |
| сс     | 0.95                 | 0.95                  |  |
| PR     | 0.98                 | 1.01                  |  |
| QQ fit | 1.04+0.05            | 1.04+0.03             |  |



|        | LOT4<br>(new period) | LOT4<br>(full period) |  |
|--------|----------------------|-----------------------|--|
| N      | 5005                 | 10860                 |  |
| MEAN   | 4.21                 | 4.19                  |  |
| BIAS   | 0.17                 | 0.16                  |  |
| AME    | 0.23                 | 0.22                  |  |
| RMSE   | 0.28                 | 0.27                  |  |
| SI     | 0.06                 | 0.05                  |  |
| EV     | 0.89                 | 0.88                  |  |
| СС     | 0.95                 | 0.94                  |  |
| PR     | 0.97                 | 1.00                  |  |
| QQ fit | 1.03+0.06            | 1.02+0.06             |  |

### Table 4.4 Statistics of wave validation ( $T_{02}$ , for $H_{m0} > 0.5$ m)



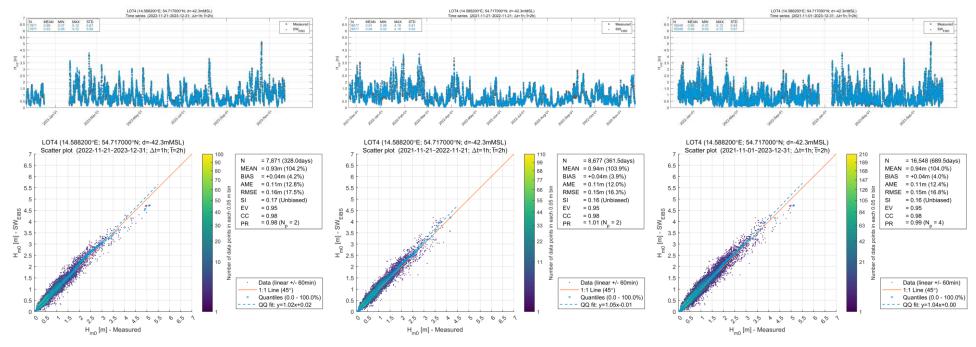
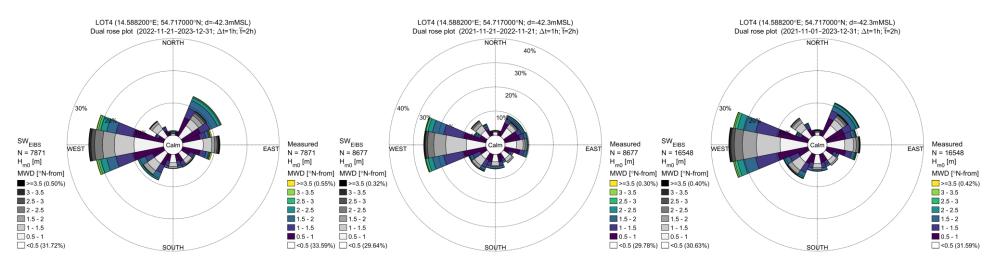
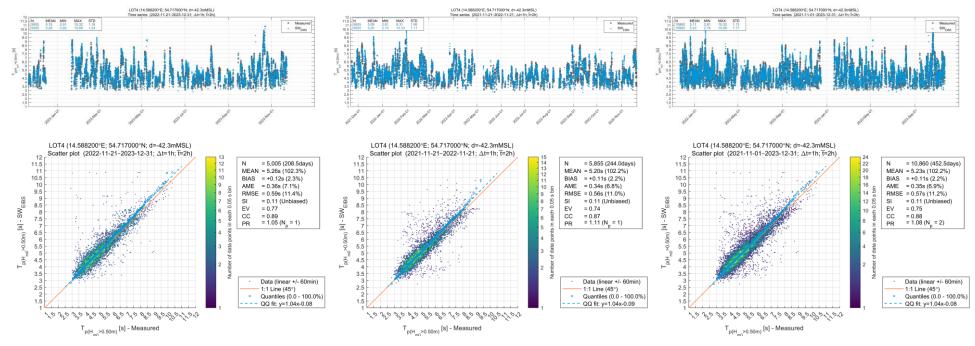



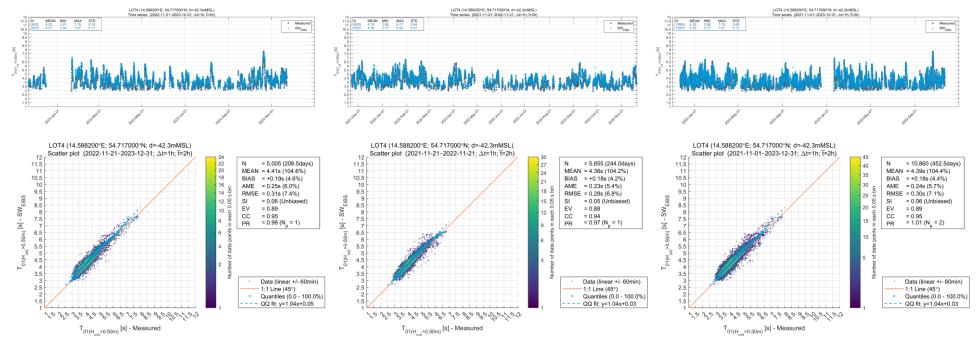

Figure 4.1 Comparison of measured and modelled H<sub>m0</sub> at LOT4


Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.





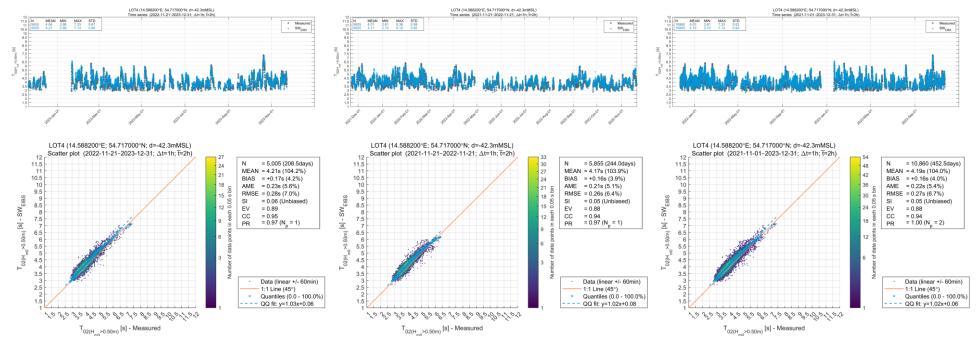
#### Figure 4.2 Comparison of measured and modelled wave rose at LOT4 Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".






#### Figure 4.3 Comparison of measured and modelled T<sub>p</sub> at LOT4

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries, Bottom: Rose plots.






#### Figure 4.4 Comparison of measured and modelled T<sub>01</sub> at LOT4

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.





#### Figure 4.5 Comparison of measured and modelled T<sub>02</sub> at LOT4

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.



## **5 Water Level Revalidation**

This section summarises the modelled versus the measured water level. Modelled water levels are based on the  $HD_{NE-ERA5}$  model (Section 4.3.1 of [1]) with coverage extended to November 22, 2023 (end of measurement campaign).

Figure 5.1 compares the time series and scatter plots of water levels during the new campaign period, the old campaign period, and the full coverage of the campaign period.

Table 5.1 provides the validation statistics for the new and full campaign periods. The validation during the new campaign period is consistent with the previous validation [1]. This indicates a high correlation between the  $HD_{NE-ERA5}$  model and local measurements. Therefore, no further adjustments are required for the water level-related sections in [1] and [2].

|        | LOT4<br>(new period) | LOT4<br>(full period) |  |
|--------|----------------------|-----------------------|--|
| Ν      | 16897                | 34726                 |  |
| MEAN   | -0.00                | -0.00                 |  |
| BIAS   | -0.00                | -0.00                 |  |
| AME    | 0.03                 | 0.02                  |  |
| RMSE   | 0.03                 | 0.03                  |  |
| SI     | 0.25                 | 0.22                  |  |
| EV     | 0.96                 | 0.97                  |  |
| СС     | 0.98                 | 0.99                  |  |
| PR     | 0.87                 | 0.90                  |  |
| QQ fit | 0.97x-0.0            | 0.98x-0.0             |  |

 Table 5.1
 Statistics of water level validation



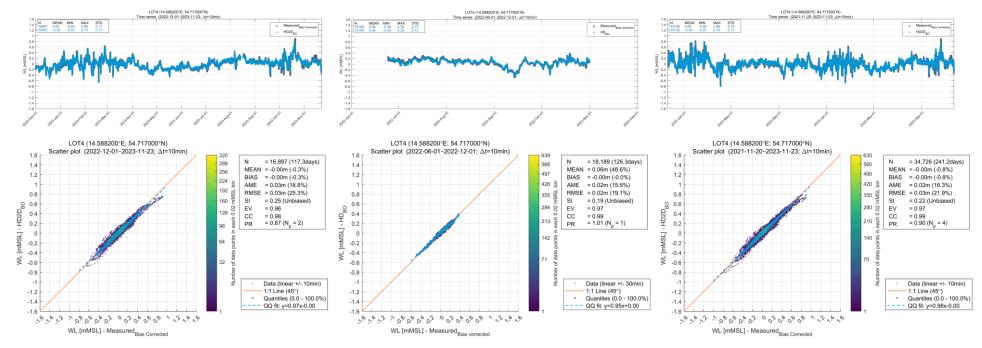



Figure 5.1 Comparison of measured and modelled water level at LOT4

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.



## 6 **Current Revalidation**

This section summarises the modelled versus the measured current speed and direction. Modelled current speed and direction parameters are based on the HD<sub>EIBS</sub> model (Section 5.4 of [1]) with coverage extended to November 22, 2023 (end of measurement campaign).

Figure 6.1, Figure 6.3, Figure 6.5, and Figure 6.7 show the comparison of the time series and scatter plots of current speed (at 10 m and 32 m depth) during the new campaign period, the old campaign period, and the full coverage of the campaign period. The current rose comparison, at 10 m and 32 m depth, is presented in Figure 6.2, Figure 6.4, Figure 6.6, and Figure 6.8.

Table 6.1 and Table 6.2 provide the validation statistics for the new and full campaign periods.

During November 2022, ADCP observations of currents indicate very high currents, especially at LOT 3, both at surface and mid-depth. These current events are not well reflected in the current modelling. We have inspected the basic model results to find an indication of why.

The period around November 19 is characterized by winds from NE and a strong current towards SW, basically following the slopes of the Rønne Banke. The ADCP shows a peak at 50cm/s, going SW at 10m and 30cm/s at 26m. The model shows currents towards SW and SSW along the slope at about 25cm/s at 10m and less than 20cm/s in the deeper part of the water column (see Figure 6.9 and Figure 6.10). A possible explanation for the discrepancy in flow pattern is that the flow resistance (in the model) along the slope is relatively large due to the z-layers (giving s staircase bottom), which will be especially prominent for along-slope flows, thus dampening south-westward currents. During the autumn of 2022, observations show 6 peak current events with south-westerly currents.

This non-conservative prediction of LOT3 peak currents during the autumn season does affect the general QQ-fit such that extreme currents estimates may be adjusted by 20% in the development area (see Figure 6.1 through Figure 6.8). However, this adjustment has already been considered in the design conditions for current in [2] where post-calibration scaling factors, as shown in Table 6.3, are provided.

In summary, no further adjustments are needed for the current related sections in [1] and [2].



|        | LOT3<br>(new period) | LOT3<br>(full period) | LOT4<br>(new period) | LOT4<br>(full period) |
|--------|----------------------|-----------------------|----------------------|-----------------------|
| N      | 10908                | 27031                 | 73750                | 97621                 |
| MEAN   | 0.09                 | 0.09                  | 0.07                 | 0.07                  |
| BIAS   | -0.04                | -0.03                 | -0.02                | -0.02                 |
| AME    | 0.07                 | 0.06                  | 0.05                 | 0.05                  |
| RMSE   | 0.09                 | 0.08                  | 0.07                 | 0.06                  |
| SI     | 0.60                 | 0.66                  | 0.66                 | 0.65                  |
| EV     | -0.27                | -0.40                 | -0.17                | -0.12                 |
| СС     | 0.18                 | 0.13                  | 0.34                 | 0.36                  |
| PR     | 0.57                 | 0.59                  | 0.82                 | 0.80                  |
| QQ fit | 0.72x-0.00           | 0.77x-0.00            | 0.86x-0.01           | 0.84x-0.01            |

#### Table 6.1 Statistics of current validation at -10m depth

#### Table 6.2 Statistics of current validation at -32m depth

|        | LOT3<br>(new period) | LOT3<br>(full period) | LOT4<br>(new period) | LOT4<br>(full period) |
|--------|----------------------|-----------------------|----------------------|-----------------------|
| N      | 10909                | 27032                 | 73577                | 98429                 |
| MEAN   | 0.08                 | 0.08                  | 0.07                 | 0.07                  |
| BIAS   | -0.06                | -0.03                 | -0.02                | -0.02                 |
| AME    | 0.08                 | 0.06                  | 0.04                 | 0.04                  |
| RMSE   | 0.10                 | 0.08                  | 0.06                 | 0.06                  |
| SI     | 0.63                 | 0.68                  | 0.64                 | 0.64                  |
| EV     | -0.15                | -0.11                 | -0.11                | -0.08                 |
| СС     | 0.20                 | 0.28                  | 0.34                 | 0.36                  |
| PR     | 0.74                 | 0.69                  | 0.64                 | 0.66                  |
| QQ fit | 0.63x-0.01           | 0.71x+0.00            | 0.80x-0.00           | 0.81x-0.00            |



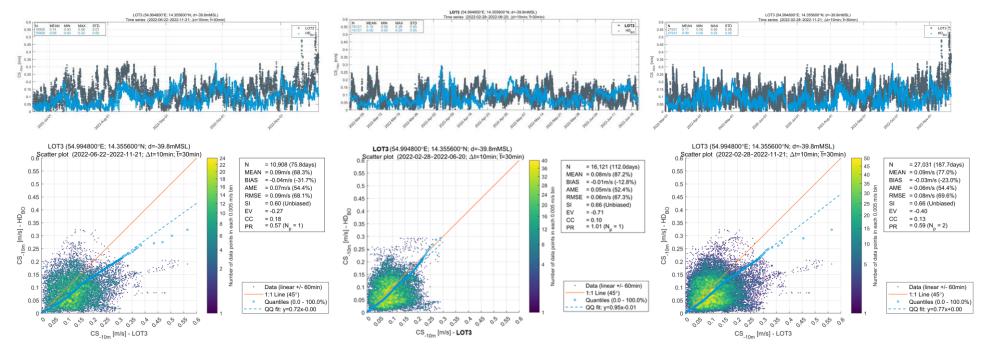



Figure 6.1 Comparison of measured and modelled current speed at LOT3, 10 m depth Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.



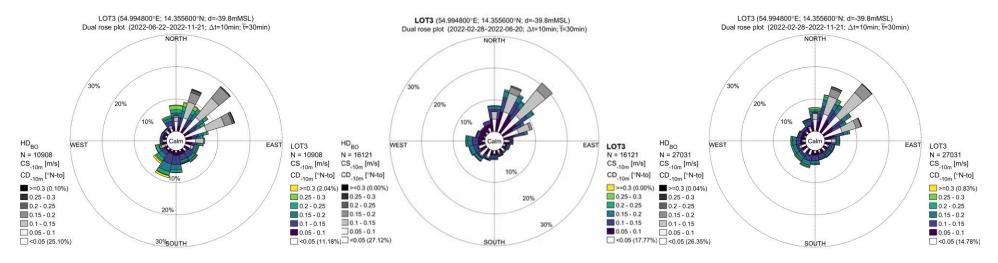



 Figure 6.2
 Comparison of measured and modelled current rose at LOT3, 10 m depth

 Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".



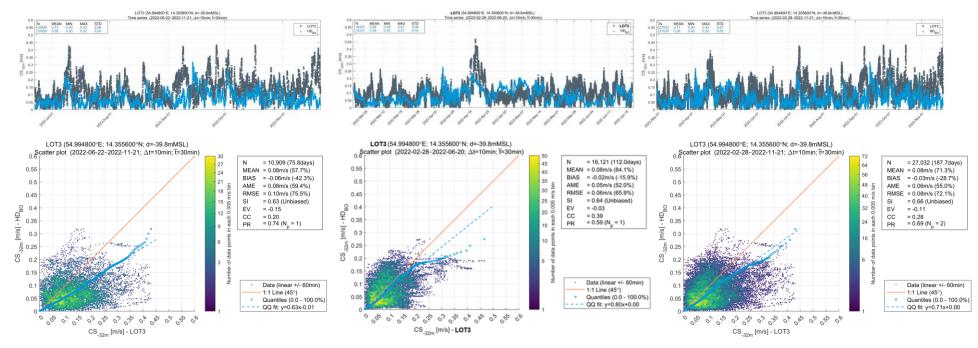



Figure 6.3 Comparison of measured and modelled current speed at LOT3, 32 m depth Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries, Bottom: Rose plots.



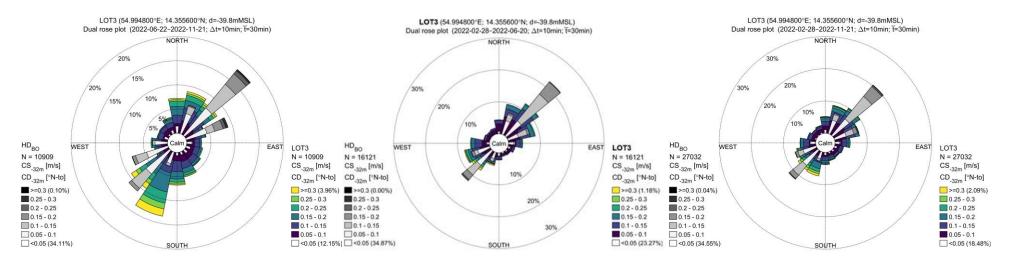



 Figure 6.4
 Comparison of measured and modelled current rose at LOT3, 32 m depth

 Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".



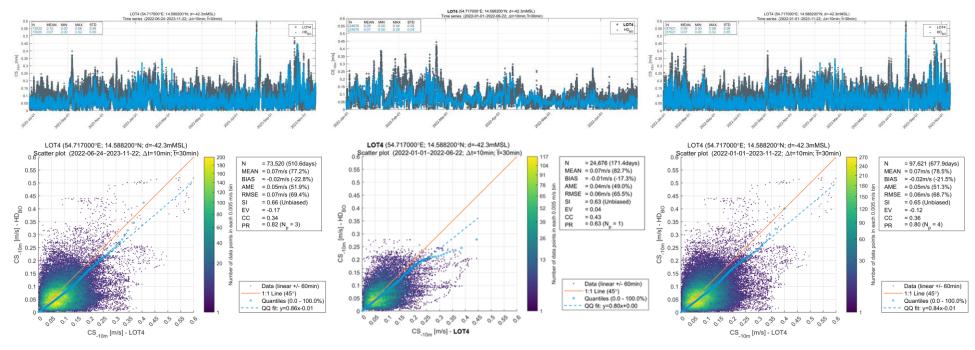



Figure 6.5Comparison of measured and modelled current speed at LOT4, 10 m depth<br/>Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".<br/>Top: Timeseries plots, Bottom: Scatter plots



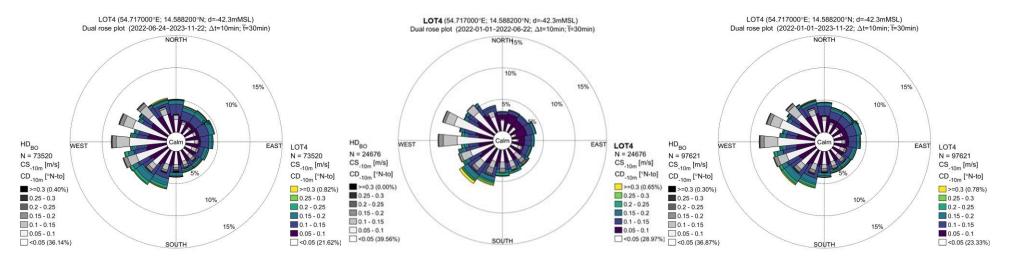



Figure 6.6 Comparison of measured and modelled current rose at LOT4, 10 m depth Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".



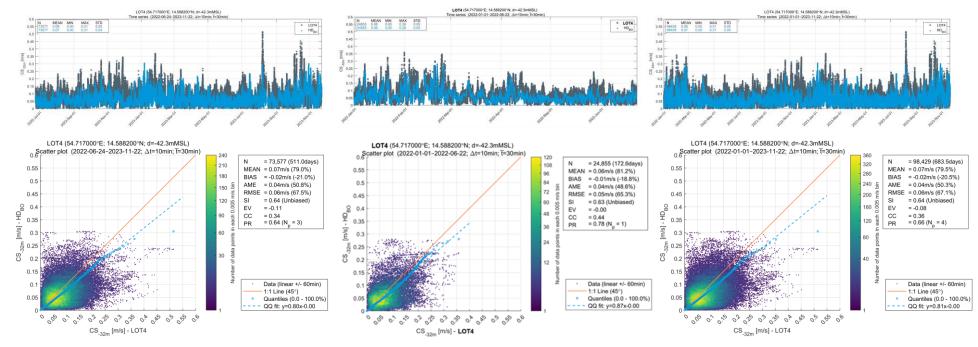
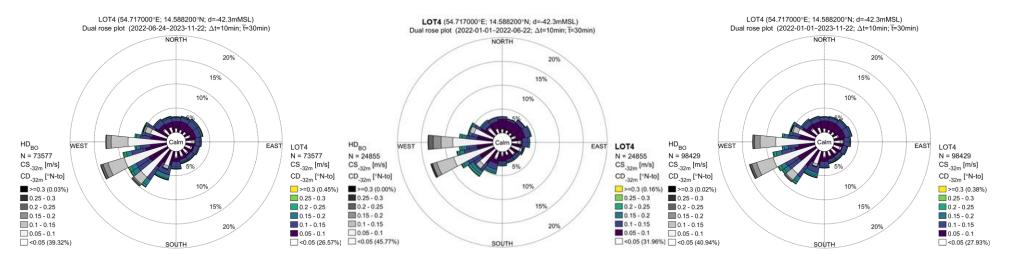
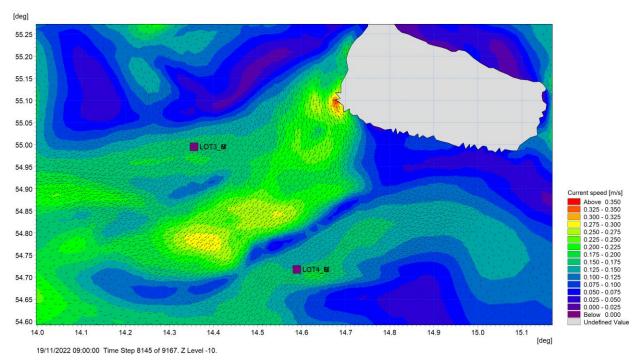




Figure 6.7 Comparison of measured and modelled current speed at LOT4, 32 m depth Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries, Bottom: Rose plots.






#### Figure 6.8 Comparison of measured and modelled current rose at LOT4, 32 m depth

Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.





Modelled currents at -10 m depth Figure 6.9

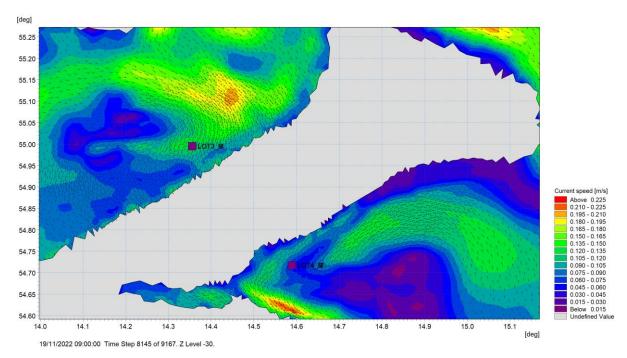



Figure 6.10 Modelled currents at -30 m depth (with Rønne Banke shown in grey)

| Table 6.3 | Post-calibration scaling factors for current speeds (fro |        |  |  |
|-----------|----------------------------------------------------------|--------|--|--|
| Depth     |                                                          | Factor |  |  |
| Surface   |                                                          | 1.0    |  |  |
| Mid-depth |                                                          | 1.25   |  |  |
| Near-bed  |                                                          | 1.1    |  |  |

. s (from [2])



# 7 Temperature and Salinity Revalidation

This section summarises of the modelled versus the measured temperature and salinity. Modelled temperature and salinity are based on the  $HD_{EIBS}$  model (Section 5.4 of [1]) with coverage extended to November 22, 2023 (end of measurement campaign).

Figure 7.1 compares the time series and scatter plots of near-surface temperature during the new campaign period, the old campaign period, and the full coverage of the campaign period. The temperature timeseries comparison plot at 9 m, 18 m, 25 m, and 33 m depths is presented in Figure 7.2. The salinity time series comparison plot at 25 m depth is presented in Figure 7.3.

Overall, the temperature and salinity validation during the new campaign period align with the previous validation [1]. The  $HD_{EIBS}$  model continues to demonstrate strong agreement with local measurements, indicating no further adjustments are necessary for the temperature and salinity-related sections in [1] and [2].



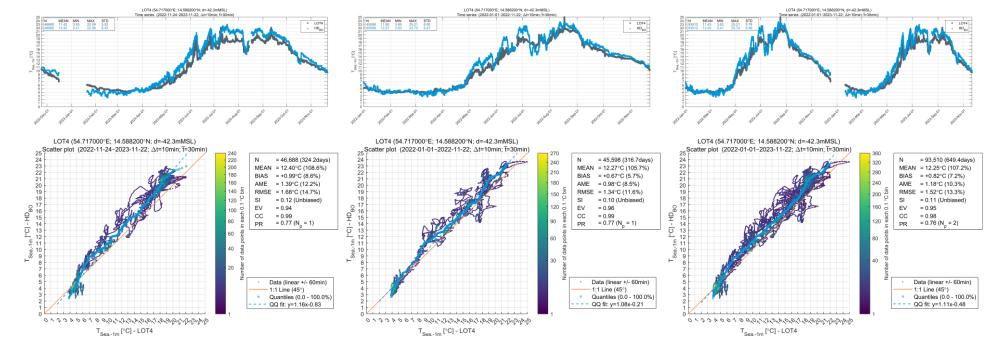
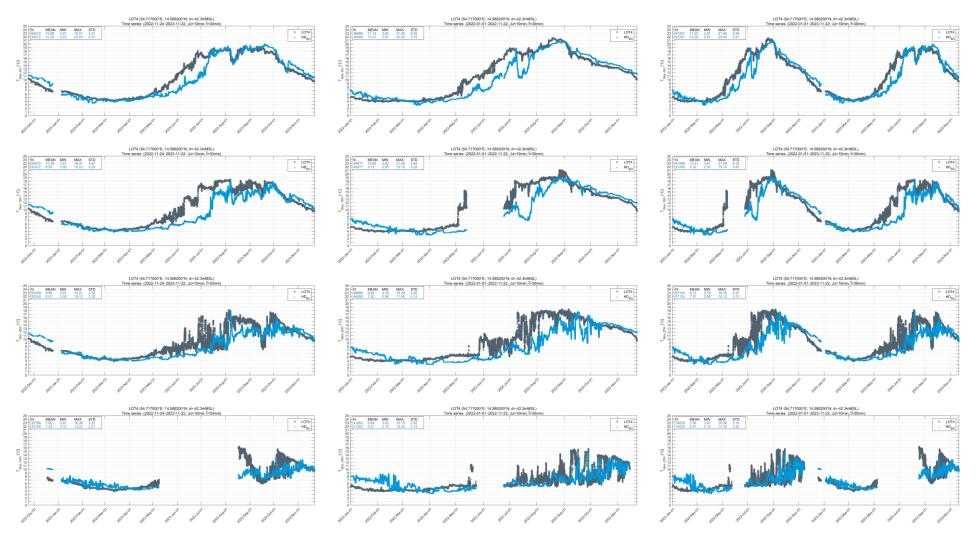




Figure 7.1 Comparison of measured and modelled water temperature at LOT4, surface Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements". Top: Timeseries plots, Bottom: Scatter plots.





# Figure 7.2Comparison of measured and modelled water temperature at LOT4<br/>Left: "New measurements", Middle: "Measurements from data report [1]" and, Right: "Measurements from data report [1] and new measurements".<br/>From top is shown 9 m, 18 m, 25 m and 33 m.









## 8 References

- [1] DHI, "Energy Island Baltic Sea, Metocean Site Conditions Assessment, Part A: Description and Verification of Data Basis," 2024.
- [2] DHI, "Energy Island Baltic Sea, Metocean Site Conditions Assessment, Part B: Data Analysis," 2024.
- [3] UL Solutions, "Evaluation Report Site Conditions Metocean Conditions Part A (Report No. R14772968-0-2, Rev. 0, 2024-03-19)," 2024.
- [4] UL Solutions, "Evaluation Report Site Conditions Metocean Conditions Part B (Report No. R14772968-0-3, Rev. 0, 2024-03-19)," 2024.
- [5] UL Solutions, "Evaluation Report Site Conditions Measurement Campaign for Wind and Metocean Conditions (Report No. R14772968-0-5, Rev. 1, 2024-03-19)," 2024.
- [6] DNV, "DNV-RP-C205 Environmental conditions and environmental loads," DNV AS, 2021.
- [7] IEC, "61400-3-1, Wind energy generation systems Part 3-1: Design requirements for fixed offshore wind turbines," 2019.