Session 3

Losses from increased level of RE - 11 kV PF case study

Homework

Case Study- PF SSEG

- 11 kV grid with three feeders, A, B and C and 4510 attached households
- The 11 kV grid is connected to single feeding source, a 33 kV distribution grid. Here named "External Grid" (top-down) (slack)
- Let's study some cases and see how the loss pattern changes with SSEG

Assumptions:
??
??

Case Study- PF SSEG

- 11 kV grid with three feeders, A, B and C and 4510 attached households
- The 11 kV grid is connected to single feeding source, a 33 kV distribution grid. Here named "External Grid" (top-down) (slack)
- Let's study some cases and see how the loss pattern changes with SSEG
- Assumptions and questions:
- Voltage will increase locally
- Consumption close to the production reduced distribution
- → Reduced system losses
- Increased share of SSEG exceeding production compared to consumption
- More distribution throughout the grid
- \rightarrow increased losses
- But where is the breaking point?
- What solutions can be used to enable more SSEG?

Case 1 – External Grid keeps active power balance

- External Grid keeps active power balance (slack)
- The house hold loads are at their highest
- No SSEG connected

 This case represents the base case, no SSEG and high load is the "worst" operating case for the power grid during these conditions.

Case 1 – External Grid keeps active power balance

- External Grid keeps active power balance (slack)
- The house hold loads are at their highest
- No SSEG connected
- This case represents the base case, no SSEG and high load is the "worst" operating case for the power grid during these conditions.
- Grid losses: 0.32MW
- Voltages decreasing due to high consumption from hh

Case 1 – External Grid keeps active power balance

Load Flow Calculation												Grid S	
AC Load Flow, ba					I	Automatic 1						No	
Automatic tap ad	justm	ent of tra	ansform	ners No	1	Max. Accept	able Loa	d Flo	w Error	for			
Consider reactive	e pow	er limits		No	1	Nodes						1,0	00 kVA
						Model E							10 %
Grid: LV-Grid		-	_		Stu	-	iy Case			Annex			
Grid: LV-Grid													
No. of Substations				Busbars						No.	of Lines		15
No. of 2-w Trfs.			No. of	3-w Trfs.	0	No. of	yn. Mach	ines	0	No.	of asyn.Ma	achines	0
No. of Loads	15	1	No. of	Shunts/Filters	0	No. of	SVS		0				
	=	-,		0,00	Mvar	0,00	MVA						
External Infeed	=		MW	5,74	Mvar	12,88	MVA						
Inter Grid Flow			MW	0,00	Mvar	V Anna Maria							
Load P(U)	=	11,21	MW	5,43	Mvar	12,46	MVA						
Load P(Un)	=	11,21	MW	5,43	Mvar	12,46	MVA						
Load P(Un-U)	=	-0,00	MW	-0,00	Mvar								
Motor Load		0,00			Mvar	0,00	MVA						
Grid Losses	=	0,32	MW	0,31	Mvar								
Line Charging				0,00	Mvar								
Compensation ind.	=			0,00	Mvar								
Compensation cap.	=			0,00	Mvar								
Installed Capacity		0,00	MW										
Spinning Reserve	=	0,00	MW										
Total Power Factor:													
Generation													
Load/Motor	=	0,90 / 0,0	00 [-]	1									

Case 1 — External Grid keeps active power balance | System Stage: LV-Grid | Study Case: Study Case | Annex: /3 | Study Case: Study Case | Annex: /3 | Study Case: Study Case | Study Case |

Grid: LV-Grid		System S	tage: LV-	-Grid	Study	Case: St	tudy Case		Annex:		/ 3
	rtd.V [kV]	Bus [p.u.]	- voltage [kV]			-10	-5	Voltage - I 0	eviation [%] +5	+10	\supset
A1											
A2	11,00	0,979	10,77	-0,97							
AL.	11,00	0,969	10,65	-0,67							
A3	11,00	0.956	10,52	-0 33			-				
A4	11,00	0,550	10,52	-0,55			**				
A5	11,00	0,952	10,47	-0,21							
AJ	11,00	0,950	10,45	-0,15				10			
B1	11 00	0.000	10.05	1.16							
B2	11,00	0,986	10,85	-1,16							
	11,00	0,982	10,80	-1,04							
В3	11,00	0,976	10,74	-0.89							
B4											
Bus HV	11,00	0,974	10,72	-0,82							
Dus IIV	33,00	1,000	33,00	0,00				1			
Bus LSP1	11 00	0,989	10,88	1 25							
C1	11,00	0,909	10,00	-1,25							
53	11,00	0,983	10,81	-1,06							
C2	11,00	0,975	10,72	-0,85							
C3											
C4	11,00	0,972	10,70	-0,77							
	11,00	0,968	10,65	-0,66							
C5	11.00	0,967	10.64	-0.63							
Grid: LV-Grid		System S	tage: LV-	-Grid			udy Case		Annex:		/
		Bus						Welters F	eviation [%]		
	[kV]	[p.u.]	[kV]	[deg]		-10	-5	0	+5	+10	
C6											
	11,00	0,964	10,61	-0,55							
								DT-077 BYT	I Budaan		
									Project:		
								The state of the s	Date: 2020-		

Different share of SSEG connected to the grid

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- X% SSEG connected
- This case represents the "worst" operating case when SSEG is connected. Sunny day with low load in the grid → maximum feed in to the power grid.
- All SSEG sources are contributing to the production of reactive power (inductive, pf=0.9)

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 10% SSEG connected

Grid: LV-Grid		System S	Stage: LV	-Grid	Stud	y Case: St	cudy Case		Annex:		/ 3
	rtd.V [kV]		- voltag [kV]	e [deg]		-10	-5		eviation [%] +5	+10	\supset
A1								-			
A2	11,00	1,004	11,04	0,20							
A3	11,00	1,005	11,06	0,16							
	11,00	1,007	11,08	0,11							
44	11,00	1,008	11,08	0,09							
15	11,00	1,008	11,09	0.08							
31	11,00	1,003	11,03								
32											
33	11,00	1,004	11,04	0,19							
34	11,00	1,005	11,06	0,15							
	11,00	1,006	11,06	0,14							
Bus HV	33,00	1,000	33,00	0,00				1			
Bus LSP1	11,00	1,002	11,02	0.24				i			
01											
02	11,00	1,004	11,04	0,19							
C3	11,00	1,006	11,06	0,14							
	11,00	1,006	11,07	0,12							
C4	11,00	1,007	11,08	0,09							
C5	11,00	1,008	11,08	0,09							
Grid: LV-Grid		System S	Stage: LV	-Grid	Stud	y Case: St	udy Case		Annex:		/ 4
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]			-10	-5	Voltage - De	eviation [%] +5	+10	
 C6											
	11,00	1,008	11,09	0,07							
	1								Project:		
	i						1	PowerFactory			
	1						- 1	2019 SP4	Date: 2020-	-02-25	

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 10% SSEG connected

- Grid losses: 0.01MW
- Voltages slightly increasing due to production and consumption locally, less power distributed throughout the grid
- Changed power flow bottom up

1							1		ILENT					
 							1	201	9 SP4	1	Date:	2	020-02-25	
Load Flow Calculation													Grid	
AC Load Flow, bal	lance	i, positi	ve seq	uence	1	Automatic M	odel Ada	ptatio	n for	Con	vergen		No	
Automatic tap ad	justme	ent of tra	ansform	mers No	1	Max. Accept	able Loa	d Flow	Error	fo	r			
Consider reactive	e powe	er limits		No	1	Nodes							1,	00 kVZ
					I	Model Eq							0,	10 %
Grid: LV-Grid		System	Stage	LV-Grid	I Stu	du Case: Stud	v Case				Anney			
Grid: LV-Grid		Summary												
o. of Substations	0	1	No. of	Busbars	17	No. of T			0		No.	of	Lines	15
lo. of 2-w Trfs.	1	1	No. of	3-w Trfs.	0	No. of s	yn. Mach	nines	0		No.	of	asyn.Machines	0
No. of Loads	15	1	No. of	Shunts/Filters	0	No. of S			0					
Generation	=	4,51	MW	2,19	Mvar	5,02	MVA							
External Infeed	=	-2,26	MW	-1,09	Mvar	2,51	MVA							
Inter Grid Flow	=	0,00	MW	0,00	Mvar									
Load P(U)	=	2,24	MW	1,09	Mvar	2,49	MVA							
oad P(Un)	=	2,24	MW	1,09	Mvar	2,49	MVA							
Load P(Un-U)	=	-0,00	MW	-0,00	Mvar									
Motor Load	=	0,00	MW	0,00	Mvar	0,00	MVA							
rid Losses	=	0,01	MW	0,01	Mvar									
ine Charging	=			0,00	Mvar									
Compensation ind.	=			0,00	Mvar									
compensation cap.	=			0,00	Mvar									
installed Capacity	=	675,00	MW											
Spinning Reserve	=	0,00	MW											
Total Power Factor:														
Generation	=	0,	90 [-]										
Load/Motor	= (0,90 / 0,0	-] 00]										

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 50% SSEG connected

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 50% SSEG connected

- Grid losses: 0.82MW
- Voltages increasing and in some cases exceeding the limits of +5% due to production exceeding consumption
- Changed power flow bottom up

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 100% SSEG connected
- This case is the worst operating case when all hh has SSEG and is at low load
- ➤ 50% share of SEEG showed that the voltages increased above limits and de losses increased as well, what will happened now?

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 100% SSEG connected

No. of Loads	15	1	No. of
Generation		45,14	MW
External Infeed	-	-39,62	Mid
Inter Grid Flow	=	0,00	MW
Load P(U)	==	2,24	MW
Load P(Un)	-	2,24	MW
Load P(Un-U)		-0,00	MW
Motor Load	-	0,00	MW
Grid Losses	=	3,28	MW
Line Charging	=		
Compensation ind.	-		

- Grid losses: 3.28MW
- Voltages increasing and at all busses exceeding the limits of +5% due to production exceeding consumption
- Changed power flow bottom up

Break even

- How do we find the tipping point?
- 10% SSEG was ok, 50 % SSEG lead to exceeding the voltage increase limits and higher grid losses.

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 25% SSEG connected

Case 5 - 25% of the hh install SSEG

I	rtd.V	Bus	- voltag	Α				Voltage	- Deviat	ion [%]	
i		[p.u.]				-10	-5	0	201240	+5	+10
A1							 				
1	11,00	1,015	11,16	0,76							
IA2											
1	11,00	1,021	11,23	0,57							
IA3	11,00	1,029	11,32	0.27						i	
1A4	11,00	1,025	11,52	0,37						i i	
I	11,00	1,032	11,35	0,29						. !	
1A5											
1	11,00	1,033	11,36	0,26							
IB1	11 00	1 011	11 10	0.07						i i	
1 1B2	11,00	1,011	11,12	0,87						İ	
1	11,00	1,015	11,16	0.76						1	
IB3	,	-,						_	-		
1	11,00	1,020	11,22	0,63							
1B4											
1	11,00	1,022	11,24	0,57						i	
Bus HV	33,00	1,000	33,00	0.00				1		1	
Bus LSP1	33,00	1,000	33,00	0,00				1		1	
	11,00	1,008	11,09	0.95					1		
IC1								-			
1	11,00	1,014	11,16	0,77						i i	
1C2			20.7221					_		i i	
100	11,00	1,021	11,23	0,58							
IC3	11,00	1,023	11,26	0 52							
IC4	11,00	1,020	11,20	0,02							
i	11,00	1,027	11,30	0,42							
IC5								_		i	
I	11,00	1,028	11,31	0,39							
D							 				
Grid: LV-Grid					Stu						
		Bus						Voltage			
1		[p.u.]				-10		0		-5	+10
IC6							 				
	11,00	1,031	11,34	0,32							

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 25% SSEG connected

Generation	=	11,29	MW
External Infeed	=	-8,87	MW
Inter Grid Flow		0,00	MW
Load P(U)	=	2,24	MW
Load P(Un)	=	2,24	MW
Load P(Un-U)		-0,00	MW
Motor Load	=	0,00	MW
Grid Losses	-	0,17	MW
Line Charging	=		
Compensation ind.	=		

- Grid losses: 0.17MW
- Voltages increasing at all busses but within limits
- Changed power flow bottom up

Break even

• Can we go even further?

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

Grid: LV-Grid		System S	Stage: LV	-Grid	Study Case: St			Annex:		/ 3
 	rtd.V [kV]		- voltag [kV]		-10	-5	Voltage - Devi 0		+10	\supset
Al										
A2	11,00	1,022	11,24	1,12				- !		
	11,00	1,032	11,35	0,85				1		
A3	11,00	1,043	11,48	0.54						
A4										
45	11,00	1,047	11,52	0,43						
	11,00	1,049	11,54	0,38						
31	11 00	1 016	11 10	1 20						
32	11,00	1,016	11,18	1,20						
	11,00	1,022	11,24	1,13				i		
33	11,00	1,029	11,32	0.93						
34										
Bus HV	11,00	1,032	11,35	0,85				١ .		
	33,00	1,000	33,00	0,00			I			
Bus LSP1	11,00	1,012	11,13	1.40						
01	11,00	1,012	11,10	1,40				i i		
22	11,00	1,021	11,23	1,15						
-2	11,00	1,031	11,34	0,87						
3	11 00	1 004	11 00							
24	11,00	1,034	11,38	0,78				U.		
	11,00	1,040	11,44	0,64						
05	11,00	1,041	11,46	0,59						
Grid: LV-Grid		System S	Stage: LV	-Grid	Study Case: St	tudy Case	1	Anne::		/ 4
	rtd.V		- voltag				Voltage - Devi	•		
		[p.u.]	[kV]	[deg]		-5		5	+10	
 6										
	11,00	1,045	11,49	0,49						
	1					I	DIGSILENT	Project:		
	I						PowerFactory - 2019 SP4			
							2013 354	Dave. 2020.	-02-20	

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

Į,		77	25		V.53077
1	Generation	_	15,80	MSV	
1	External Infeed	=	-13,18	MW	
T	Inter Grid Flow		0,00	MW	
1	Load P(U)	=	2,24	MW	
1	Load P(Un)	-	2,24	MW	
1	Load P(Un-U)	-	-0,00	MW	
1	Motor Load	-	0,00	MW.	
d	Grid Losses	-	0,38	MW	
-	Line Charging	=			
1	Compensation ind.	=			

- Grid losses: 0.38MW
- Voltages increasing at all busses but within limits
- Changed power flow bottom up

Conclusion

	Grid losses [MW]	Exceeding voltage limits?
Case 1 - 0 % SSEG	0.32	no
Case 2 - 10 % SSEG	0.01	no
Case 3 - 50 % SSEG	0.82	some busses
Case 4 - 100 % SSEG	3.28	all busses
Case 5 - 25 % SSEG	0.17	no
Case 6 - 35 % SSEG	0.38	no

More SSEG?

- What can be done to accommodate 35 % SSEG?
- How will different solutions affect the grid losses?

Case 7 – 35% of the hh install SSEG, reactors

- The power grid company installs Shunt reactors at the end of Feeder A, B and C
- The reactors should reduce the voltage at the end busses in Feeder A,
 B and C
- Can these reactors push the tipping point for allowed share of SSEG in this grid to extend to 35%?
- What will happen to the grid losses?

Case 7 – 35% of the hh install SSEG, reactors

Grid: LV-Grid		System S	tage: LV	-Grid	Study Case: St	udy Case		Annex:		/ 3
l I	rtd.V [kV]		- voltag [kV]		-10	-5	Voltage - Dev 0		+10	\supset
A1										
 A2	11,00	1,012	11,13	1,43						
	11,00	1,022	11,24	1,50						
A3 	11,00	1,034	11,37	1,73						
A4	11,00	1,038	11,41	1 00						
A5	11,00	1,030								
B1	11,00	1,040	11,43	2,07						
	11,00	1,006	11,07	1,39				i i		
B2	11,00	1,012	11,13	1,41						
B3										
B4	11,00	1,019	11,21	1,56						
Due III	11,00	1,022	11,24	1,75						
Bus HV	33,00	1,000	33,00	0,00			1			
Bus LSP1	11,00	1,002	11,02	1 42						
C1								i j		
C2	11,00	1,011	11,12	1,29						
	11,00	1,021	11,23	1,17				i		
C3	11,00	1,025	11,27	1.15						
C4										
C5	11,00	1,030	11,33	1,13				•		
(11,00	1,032	11,35	1,15						
]										
Grid: LV-Grid		System S	tage: LV		Study Case: St			Annek:		/ 4
 	rtd.V [kV]	Bus [p.u.]	- voltag [kV]		-10	-5	Voltage - Dev 0	riation [%] +5	+10	
C6										
	11,00	1,035	11,39	1,31						
]										
 							DIGSILENT PowerFactory	Project:		
								Date: 2020-		

Case 7 – 35% of the hh install SSEG, reactors

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected
- Reactors are added at the end of Feeder A, B and C

- Grid losses: 0.34MW
- Voltages decreasing thanks to reactors
- Changed power flow bottom up

Case 8 – 35% of the hh install SSEG, cap. SSEG

- The Shunt reactors are set out of service for all the feeders
- Instead the power factor of the PV inverters are changed to 0.9 capacitive
- This gives that the PV-sources now are consuming reactive power
- What will happen to the grid losses?

Case 8 – 35% of the hh install SSEG, cap. SSEG

Grid: LV-Grid		System S	Stage: LV	-Grid	Study Case:		1	Annex:		/ 3
	rtd.V		- voltag [kV]	e		-5	Voltage - Devi 0		+10	
Al										
A2	11,00	0,993	10,92	1,84				į.		
H2	11,00	1,003	11,04	2,24				- 1		
A3	11 00	1,015	11,17	2 60			_	i		
A4	11,00	1,015	11,17	2,09				. !		
	11,00	1,019	11,21	2,85						
A5	11,00	1,021	11,23	2,92				i		
B1							_	. !		
B2	11,00	0,987	10,86	1,59						
	11,00	0,993	10,92	1,80				i i		
B3	11,00	1,001	11,01	2.07			i			
B4		2,002					-			
Bus HV	11,00	1,004	11,04	2,18				i i		
ous nv	33,00	1,000	33,00	0,00			ĺ	. !		
Bus LSP1	11 00	0 002	10.01	1 42			_			
01	11,00	0,983	10,81	1,43				i i		
	11,00	0,992	10,92	1,78				. !		
C2	11,00	1,003	11,03	2,15			1			
C3							_	i		
04	11,00	1,006	11,07	2,28				. !		
	11,00	1,012	11,13	2,47						
C5	11 00	1,013	11,15	2 53				i i		
										
Grid: LV-Grid		System S			Study Case:			Annek:		/ A
	rtd.V		- voltag		-10	-5	Voltage - Devi 0		+10	
	[KV]	[p.u.]	[KV]		-10					
06	11 00	1 012	11 10	2 66				į		
	11,00	1,017	11,19	2,00						
							DI-CII PUT			
	I					1	DIGSILENT PowerFactory -	Project:		
	1					i				

Case 8 – 35% of the hh install SSEG, cap. SSEG

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected
- PV-sources 0.9 capacitive
- Grid losses: 0.46MW
- Voltages increasing at all busses but within limits
- Changed power flow bottom up

Case 9 – 35% of the hh install SSEG, cap. SSEG and reactor at MV bus

- The SSEG systems are still capacitive
- A shunt reactor at the MV bus is added

Case 9 – 35% of the hh install SSEG, cap. SSEG and reaction at New business business and reaction at the business business are selected as a selected at the business business and reaction is a selected at the business business and reaction is a selected at the business business and reaction is a selected at the business and reaction at the business and reaction at the business and reaction is a selected at the business and reaction at the business

tOI	Crti.	V Vus		e [deg]	U)		- Deviation +	and the second s	
A1									
A2	11,0	0 0,982	10,80	1,86					
A3	11,0	0,993	10,92	2,28					
	11,0	0 1,004	11,05	2,74					
A4	11,0	0 1,009	11,09	2,90			1		
A5	11,0	0 1,010	11,11	2 92					
81									
32	11,0	0 0,976	10,74	1,61					
33	11,0	0 0,982	10,80	1,83					
	11,0	0,990	10,89	2,10					
34	11,0	0 0,993	10,92	2,22					
Bus HV	33,0		33,00	0,00					
Bus LSP1									
1	11,0	0 0,972	10,69	1,45					
2	11,0	0,981	10,79	1,80					
	11,0	0 0,992	10,91	2,18					
:3	11,0	0 0,995	10,95	2.31					
4	11,0		11,01						
C5									
	11,0	0 1,003	11,03	2,57		!			
Grid: LV-Grid		System S			Study Case: Study Ca		Annex		/ 4
	rtd.	V Bus	- voltage	e		Voltage ·	- Deviation	[%]	
	[kV] [p.u.]	[kV]	[deg]	-10 -5	5 0	+	+10	
06	11,0	0 1,006	11,07	2,70					
	!					DIGSILEN			
	1					rowerracto		2020-04-20	

Case 9 – 35% of the hh install SSEG, cap. SSEG and reactor at MV bus

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

	NO. OI LORGS	15		o. or sur
1	Generation		15,80	MW
1	External Infeed		-13,09	MW
4	Inter Grid Flow		0,00	150
1	Load P(U)		2,24	MW
1	Load P(Un)		2,24	MW
- 1	Load P(Un-U)	=	-0,00	MW
- 1	Motor Load	=	0,00	MW
d	Grid Losses	=	0,47	MW
1	Line Charging	=		
- 7	Commenced on And			

- Grid losses: 0.47MW
- Voltages decreasing, within limits
- Changed power flow bottom up

Case 10 – 35% of the hh install SSEG, ind. SSEG and reactor at MV bus

- The SSEG systems are inductive (default)
- A shunt reactor at the MV bus is added

Case 10 - 35% of the hh install SSEG, ind.

Case 10 – 35% of the hh install SSEG, ind. SSEG and reactor at MV bus

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

. 4	No. of Loads	15	1	10.01	Shunts
1	Consumed on		15.00	107	
- 1:	Generation	-	15,80	150	
	External Infeed		-13,18	Min	
-	Inter Grid Flow	-	0,00	Mil	
1	Load P(U)	=	2,24	MW	
- 1	Load P(Un)	=	2,24	MM	
1	Load P(Un-U)	-	0,00	MW	
1	Motor Load	-	0,00	MW	
d	Grid Losses	=	0,38	254	
1	Line Charging	=			
	Accessors and an inches				

- Grid losses: 0.38MW
- Reduced voltage at some busses

Case 11 – 35% of the hh install SSEG, cap. and ind. SSEG

• Every second SSEG systems is capacitive

Case 11 – 35% of the hh install SSEG, cap. and

ind. SSE

| Study Case: Study Case Voltage - Deviation [%] [kV] [p.u.] 11,10 1,42 11,00 1,019 11,21 1,48 1,031 11,34 1,41 IA4 1,035 11,38 1,42 IA5 11,00 1,037 11,41 1,37 IB1 11,00 1,003 11,04 1,44 1,009 11,10 1,39 **IB3** 11,18 1,41 1B4 11,00 1,019 11,21 1,33 |Bus HV 33,00 1,000 33,00 0,00 |Bus LSP1 10,99 1,42 IC1 11,00 11,09 1,45 IC2 11,20 1,42 11,24 1,42 IC4 11,00 11,30 1,38 1C5 11,00 1,029 System Stage: LV-Grid | Study Case: Study Case | Annet: [kV] [p.u.] [kV] [deg] DIgSILENT | Project: | 2019 SP4 | Date: 2020-04-20

Case 11 – 35% of the hh install SSEG, cap. and ind. SSEG

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

Generation	=	15,80	MW	
External Infeed	=	-13,25	150	
Inter Grid Flow	=	0,00	259	
Load P(U)	=	2,24	MW	
Load P(Un)	100	2,24	MW	
Load P(Un-U)		-0,00	MW	
Motor Load	=	0,00	MW	
Grid Losses	=	0,32	MW	
Line Charging	=			

- Grid losses: 0.32MW
- Voltages within limits
- Changed power flow bottom up

Case 12 – 35% of the hh install SSEG, cap. and ind. SSEG and reactor at MV bus

- Every second SSEG systems is capacitive
- A shunt reactor at the MV bus is added

Case 12 – 35% of the hh install SSEG, cap. and

ind. SSEGrand Personal Toration at My Vitago Lines 11,00 0,998 10,98 1,44 11,09 1,50 11,22 1,42 IA4 1,024 11,27 1,44 IA5 11,00 1,026 11,29 1,39 IB1 11,00 0,992 10,91 1,45 10,98 1,40 11,00 0,998 IB3 11,06 1,42 IB4 11,00 1,009 11,09 1,34 33,00 1,000 33,00 0,00 |Bus LSP1 IC1 10,97 1,47 11,08 1,43 IC3 11,12 1,44 IC4 11,00 1,016 11,18 1,39 IC5 11,00 1,018 11,20 1,39 System Stage: LV-Grid | Study Case: Study Case | Anner: [kV] [p.u.] [kV] [deg] 0 | DIgSILENT | Project: | 2019 SP4 | Date: 2020-04-20

Case 12 – 35% of the hh install SSEG, cap. and ind. SSEG and reactor at MV bus

- External Grid keeps active power balance (slack)
- The house hold loads are at their lowest
- 35% SSEG connected

No. of Loads	15	N	o. of	Shunts/E
Generation	-	15,80	MW	
External Infeed		-13,24	MW	
Inter Grid Flow	=	0,00	MW	
Load P(U)	=	2,24	MW	
Load P(Un)	-	2,24	MW	
Load P(Un-U)	-	-0,00	MW	
Motor Load	g .	0,00	MW	
Grid Losses	-	0,32	MW	
Line Charging	-			

- Grid losses: 0.32MW
- Voltages are decreased more slack
- Changed power flow bottom up

Conclusion

	Crid lesses [NAVA]	
	Grid losses [MW]	Exceeding voltage limits?
Case 1 - 0 % SSEG	0.32	no
Case 7 - 35 % SSEG,		
reactors at end of feeders	0.34	no
Case 8 - 35 % SSEG,		
cap. SSEG	0.46	no
Case 9 - 35 % SSEG,		
cap SSEG & Reactor at main bus	0.47	no
Case 10 - 35 % SSEG,		
reactor at main bus	0.38	no
Case 11 - 35 % SSEG,		
cap. and ind. SSEG	0.32	no
Case 12 - 35 % SSEG,		
cap. and ind. SSEG & Reactor at main bus	0.32	no

Homework

