Session 2

Mitigation possibilities for power quality and operational issues in relation to RE integration in distribution networks

Agenda for Session 2

- Grid codes
- Examples of operational issues faced by ESKOM
- Solutions
- Grid code requirement in relation to operational issues

Grid code

- Network Code on Requirements for Generators (RfG)
- Grid connection code for Renewable power plants (RPPs) connected to the electricity transmission system (TS) or the distribution system (DS) in South **Africa**

GRID CONNECTION CODE FOR RENEWABLE POWER PLANTS (RPPs) CONNECTED TO THE ELECTRICITY TRANSMISSION SYSTEM (TS) OR THE DISTRIBUTION SYSTEM (DS) IN SOUTH AFRICA

REGULATIONS (MISSION REGULATION (EU) 2016

Grid code - RfG and national implementations

Grid code – Threshold values

Synchronous Area	: [MW] A])				
	A B	В С	c		
Continental Europe	1 MW	50 MW	75 MW		
Great Britain	1 MW	50 MW	75 MW		
Nordic	1.5 MW	10 MW	30 MW		
Ireland and Nothern Ireland	0.1 MW	5 MW	10 MW		
Baltic	0.5 MW	10 MW	15 MW		
South Africa	1 MVA	20 MVA	-		
Category A	Upper	Upper threshold limit [kVA]			
	A1 A2	A2 A3			
Soth Africa	13.8 kVA	100 kVA			

Regardless of capacity, cat.
D if ≥110kV

Must not exceed difference in installed capacity between phases of 4.6 kVA per phase

Grid code – scope of the grid codes

	Table 2. RfG requirements for PPM, per type. [1]								
	Requirement		Ty	pe					
	Requirement	A	B	C	D				
	Frequency ranges	X	X						
	Limited frequency sensitive mode (overfrequency), LFSM-O	X	X	X	X				
	Rate of change of frequency withstand capability	X	X	X	X				
7	Constant output at target active power	X	X	X	X				
Ę.	Maximum power reduction at underfrequency	X	X	X	X				
Pill	Automatic connection	X	X	X	X				
Sta	Remote switch on/off	X	X						
3.	Active power reduction		X						
Frequency Stability	Active power controllability and control range			X	X				
Fre	Disconnection of load due to underfrequency			X	X				
N 1	Frequency restoration control			X	X				
	Frequency sensitive mode			X	X				
	Limited frequency sensitive mode (underfrequency), LFSM-U			X	X				
	Monitoring of frequency response	\Box		X	X				
İ	Synthetic inertia capability	П		X	X				

	Control schemes and settings Information exchange	X	X	X		Auto reclosures Steady-state stability		X	ζ
ent	Priority ranking of protection and	X			ratio	Reconnection after an incidental	Х	X	(
Management	control ransformer neutrl-point treatment		X	X	Restoration	disconnection due to a network disturbance			
ana	lectrical protection schemes and	X	X			Black start		Х	-
	settings Installation of devices for system		X	X	System	Capability to take part in isolated network operation		X	1
System	peration and/ or security					Quick re-synchronisation		Х	(
ralS	Instrumentation for fault and dynamic behavior recording		X	X	SS	Post fault active power recovery Fault ride through capability of power	X	_	ζ ζ
General	Loss of stability		X	X	Robustness	park modules connected below 110 kV			
اق	Rate of change of active power		X	X	nqc	Fault ride through capability of power			
1	Simulation models	_	X	X	Z	park modules connected at 110 kV or			
	Synchronisation			X		above		_	

Â٦	Reactive current injection	X	X	X
T.	Reactive power capability (simple)	X		
ity	Priority to active or reactive power contribution		X	X
Voltage Stability	Reactive power capability at maximum active power		X	X
tage	Reactive power capability below maximum active power		X	X
20	Reactive power control modes		X	X
	Power oscillations damping control		X	X
	High/low voltage disconnection		X	
	Voltage ranges			X

Grid code – scope of the grid codes

- a) For Type A (with a maximum capacity between 0.8 kW and the A|B threshold, connected <110 kV) the main objective of the requirements is to ensure stable operation within certain frequency ranges, with only minimum requirements for automated system response or system operator control.
- **b)** For Type B (ranging between the A|B and B|C thresholds, connected <110 kV) the requirements include extended resilience to external events and also some dynamic response and basic operation control.
- c) For Type C (ranging between B|C and C|D threshold, connected <110 kV) most requirements of the RfG apply which, beyond the requirements for type A and type B, also include higher level of controllability and dynamic response in order to provide ancilliary services.
- d) For Type D (ranging above C|D threshold or connected >110 kV) requirements are added or modified with respect to the higher votlage levels

Proof of compliance

Table 3. Minimum requirements for compliance testing and simulations according to RfG (excluding features applicable to only synchronous

Features	Min. requirements for testing (T) and simulation (S)					
	В	C	D	Offshore		
LFSM-O	T+S	T+S	T+S	T		
LFSM-U		T+S	T+S	T		
FSM		T+S	T+S	T		
Reactive Power Capability		T+S	T+S			
Frequency Restoration	1	Т	T	T		
Voltage Control Mode		T	T	T		
Reactive Power Control Mode		Т	T	T		
Power Factor Control Mode		Т	T	Т		
Active Power Controllability		Т	T	T		
FRT	S	S	S			
Post-Fault Active Power Recovery	S	S	S	S		
Fast Fault Curent Injection	S	S	S	S		
Island Operation		S	S	S		
Power Oscillation Damping Control	S	S	S	S		
Synthetic Inertia		S	S	S		

SA grid code for RPPs

- compliance to all applicable requirements
- conducting mandatory tests or studies
- continuously monitoring of the compliance
- submit a detailed test procedure
- keeping records

Operational issues

- Issues faced by ESKOM
- Identification of the issues in the PF model
- Mitigation solutions
- Grid code
- Existing power plants

High voltages in a network due to un-normal switching status (N-1 situation) in combination with low load and weak grid and its impact on RE generation

Overload of a substation transformer due to unusually high generation from a RE

Operational issues

